A putative Drosophila nucleotide sugar transporter was characterized and shown to be the Drosophila homologue of the human UDP-Gal transporter (hUGT). When the Drosophila melanogaster UDP-Gal transporter (DmUGT) was expressed in mammalian cells, the transporter protein was localized in the Golgi membranes and complemented the UDP-Gal transport deficiency of Lec8 cells but not the CMP-Sia transport deficiency of Lec2 cells. DmUGT and hUGT were expressed in Saccharomyces cerevisiae cells in functionally active forms. Using microsomal vesicles isolated from Saccharomyces cerevisiae expressing these transporters, we unexpectedly found that both hUGT and DmUGT could transport UDP-GalNAc as well as UDP-Gal. When amino-acid residues that are conserved among human, murine, fission yeast and Drosophila UGTs, but are distinct from corresponding ones conserved among CMP-Sia transporters (CSTs), were substituted by those found in CST, the mutant transporters were still active in transporting UDP-Gal. One of these mutants in which Asn47 was substituted by Ala showed aberrant intracellular distribution with concomitant destabilization of the protein product. However, this mutation was suppressed by an Ile51 to Thr second-site mutation. Both residues were localized within the first transmembrane helix, suggesting that the structure of the helix contributes to the stabilization and substrate recognition of the UGT molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.0014-2956.2001.02632.x | DOI Listing |
Front Cell Dev Biol
December 2024
Departments of Biology, University of York, York, United Kingdom.
Neurobiol Dis
October 2024
The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia. Electronic address:
Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is an important cause of drug-resistant epilepsy. A significant subset of individuals diagnosed with MOGHE display somatic mosaicism for loss-of-function variants in SLC35A2, which encodes the UDP-galactose transporter. We developed a mouse model to investigate how disruption of this transporter leads to a malformation of cortical development.
View Article and Find Full Text PDFNeurosci Lett
July 2024
Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Dept. of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States. Electronic address:
Brain somatic variants in SLC35A2, an intracellular UDP-galactose transporter, are commonly identified mutations associated with drug-resistant neocortical epilepsy and developmental brain malformations, including focal cortical dysplasia type I and mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). However, the causal effects of altered SLC35A2 function on cortical development remain untested. We hypothesized that focal Slc35a2 knockout (KO) or knockdown (KD) in the developing mouse cortex would disrupt cortical development and change network excitability.
View Article and Find Full Text PDFFront Immunol
June 2023
Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
Background: Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited.
View Article and Find Full Text PDFCell Oncol (Dordr)
April 2023
Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China.
Purpose: Recently, aberrant glycosylation has been recognized to be relate to malignant behaviors of cancer and outcomes of patients with various cancers. SLC35A2 plays an indispensable role on glycosylation as a nucleotide sugar transporter. However, effects of SLC35A2 on malignant behaviors of cancer cells and alteration of cancer cells surface glycosylation profiles are still not fully understood, particularly in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!