AI Article Synopsis

  • The overstimulation of NMDA receptors can lead to excitotoxicity, which contributes to neurodegeneration in neurological disorders and brain injuries.
  • A series of synthesized kynurenine derivatives were tested for their effects on NMDA and nNOS activity in rat striatum, with compounds 15a and 15c showing the most potent inhibition.
  • Variations in structure caused differences in effectiveness, with some compounds like 18a showing lower potency than 15a and 15c, while others like 18c displayed the opposite trend, highlighting the importance of specific molecular features for their neuroprotective activity.

Article Abstract

The overstimulation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is involved in excitotoxicity, a process participating in neurodegeneration that characterizes some neurological disorders and acute cerebral insults. In looking for compounds with neuroprotective properties, a series of kynurenine derivatives were synthesized, and their effects on both the NMDA and nNOS activity in rat striatum were evaluated. Two compounds, 15a (2-acetamido-4-(2-amino-5-methoxyphenyl)-4-oxobutyric acid) and 15c (2-butyramido-4-(2-amino-5-methoxyphenyl)-4-oxobutyric acid), displayed more potent activities than the other synthetic compounds tested for the inhibition of NMDA excitability and nNOS activity. Two other compounds, 18a (2-acetamido-4-(3-methoxyphenyl)-4-oxobutyric acid) and 18c (2-butyramido-4-(3-methoxyphenyl)-4-oxobutyric acid), that have the same structure as 15a and 15c, except the amino group in R(1), showed different effects. Whereas compound 18a showed lower electrophysiological potency than compounds 15a and 15c in the inhibition of the NMDA-dependent excitability, compound 18c showed the opposite effect. Moreover, compounds 18a and 18c were unable to modify nNOS activity. The remaining kynurenines tested behave like compound 18a. These results suggest that a structure-related activity of these synthetic kynurenines and a N-H bond in a specific direction is necessary for some kynurenine analogues to inhibit nNOS activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm010916wDOI Listing

Publication Analysis

Top Keywords

nnos activity
20
activity rat
8
synthetic kynurenines
8
compounds 15a
8
compounds 18a
8
15a 15c
8
compound 18a
8
activity
6
compounds
6
inhibition nnos
4

Similar Publications

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Background: Androgen deprivation is associated with erectile dysfunction (ED). In different animal models, sulfur dioxide (SO) donors NaSO and NaHSO reduced oxidative stress, fibrosis, and inflammation which contribute to the pathogenesis of androgen deprivation-induced ED, however the effect of SO donors on ED in castrated rats were not known.

Objective: To investigate the therapeutic effect of SO donors, NaSO/NaHSO, on ED in castrated rat model.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!