The Wnt/beta-catenin signaling pathway plays multiple roles during embryonic development, only a few of which have been extensively characterized. Although domains of Wnt expression have been identified throughout embryogenesis, anatomical and molecular characterization of responding cells has been mostly unexplored. We have generated a transgenic zebrafish line that expresses a destabilized green fluorescent protein (GFP) variant under the control of a beta-catenin responsive promoter. Early zygotic expression of this transgene (TOPdGFP) mirrors known domains of Wnt signaling in the embryo. Loss of Lef1 activity results in decreased reporter expression and posterior defects, while loss of Tcf3 (Headless, Hdl) activity does not alter reporter expression, even though it results in loss of forebrain structures. In addition, ectopic Wnt1 expression can activate the reporter. In older embryos, we identify a number of transgene-expressing cell populations as novel sites of beta-catenin signaling. We conclude that our TOP-dGFP reporter line faithfully illustrates domains of beta-catenin activity and enables the identification of responsive cell populations.

Download full-text PDF

Source
http://dx.doi.org/10.1006/dbio.2001.0515DOI Listing

Publication Analysis

Top Keywords

domains wnt
8
reporter expression
8
cell populations
8
reporter
5
expression
5
transgenic lef1/beta-catenin-dependent
4
lef1/beta-catenin-dependent reporter
4
reporter expressed
4
expressed spatially
4
spatially restricted
4

Similar Publications

WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Amniotic fluid (AF)-derived exosomal miRNA have been explored as potential contributors to the pathogenesis of Tetralogy of Fallot (TOF). This study aimed to investigate the expression profiles of AF-derived exosomal miRNAs and their potential contribution to TOF development. Exosomes were isolated from AF samples obtained from pregnant women carrying fetuses diagnosed with TOF.

View Article and Find Full Text PDF

Background: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.

View Article and Find Full Text PDF

Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.

Curr Issues Mol Biol

December 2024

Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.

Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!