Sgn1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice.

Dev Biol

Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Published: December 2001

The salivary system in mammals is comprised of three independently developed pairs of organs, the parotid, submaxillar, and sublingual glands. Each gland is composed of various ductal and acinar cell types that fulfill multiple roles. However, the molecular mechanisms regulating their biogenesis and functions are still largely unknown. In this paper, we report that two class B basic helix-loop-helix (bHLH) transcriptional regulators delineate the ductal and the acinar cells in salivary glands. Sgn1, a novel class B bHLH factor, is specifically expressed in the salivary duct cells, while the acinar cells are characterized by the expression of another class B bHLH factor, Mist1. The molecular nature of Sgn1 was also investigated: it binds to specific sequences of DNA as a dimer with a class A bHLH factor and acts as a negative transcriptional regulator against other bHLH factors. This study provides an important cue towards better understanding of the generation and function of multiple cell types in salivary glands. In addition, Sgn1 expression exhibits a reverse relationship with the development of male phenotypes, suggesting its role in gender dimorphism in the salivary glands.

Download full-text PDF

Source
http://dx.doi.org/10.1006/dbio.2001.0473DOI Listing

Publication Analysis

Top Keywords

salivary glands
12
class bhlh
12
bhlh factor
12
basic helix-loop-helix
8
ductal acinar
8
cell types
8
acinar cells
8
salivary
6
bhlh
5
sgn1
4

Similar Publications

Background: Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration.

Material And Methods: Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science.

View Article and Find Full Text PDF

Objective: A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage.

Methods: BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis.

View Article and Find Full Text PDF

Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism mediating the regulatory effect of miR-155-5p on proliferation of human submandibular gland epithelial cells (HSGECs) in primary Sjogren's syndrome (pSS).

Methods: Dual luciferase reporter assay was used to verify the targeting relationship between miR-155-5p and the PI3K/AKT pathway. In a HSGEC model of pSS induced by simulation with TRAIL and INF-γ, the effects of miR-155-inhibitor-NC or miR-155 inhibitor on cell viability, cell cycle, apoptosis and proliferation were evaluated using CKK8 assay, flow cytometry and colony formation assay.

View Article and Find Full Text PDF

Background: Salivary duct carcinoma (SDC) is a highly aggressive salivary gland malignancy with poor prognosis. The aim was to investigate the prognostic factors and survival outcomes in a cohort of SDC patients.

Materials And Methods: This study retrospectively analyzed the clinicopathological data of 61 SDC patients treated at the First Medical Center of the PLA General Hospital between January 2010 and December 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!