We have studied several novel effects of vitamin B12 (cyanocobalamin) on cellular Ca(2+) homeostasis in rat thymocytes. We determined the effect of various concentrations of vitamin B12 on intracellular Ca(2+) concentration ([Ca(2+)]i) and parameters of Ca(2+)in signaling using the fluorescent dye Fura-2. The basal [Ca(2+)]i in Ca(2+)-containing media was 115 +/- 5 nM but in vitamin B12 (10 nM)-treated thymocytes [Ca(2+)]i was decreased to 60 +/- 15 nM (mean +/- SEM) during the first 5 min. The decline in [Ca(2+)]i was accompanied by an increase in the endoplasmic reticulum Ca(2+) store, presumably as a result of Ca-ATPase activation. At the same time 100 nM-10 mM B12 induced the accumulation of Ca(2+) in mitochondria. Somewhat higher concentrations of B12 (1-10 microM) had no effect on [Ca(2+)]i. A further increase in B12 concentration with range from 50 microM to 1 mM caused a dose-dependent elevation of [Ca(2+)]i from the basal level (115 +/- 5 nM) up to 200 +/- 50 nM in thymocytes, and this elevation was partially blocked in Ca(2+)-free media. This high concentration of vitamin B12 caused a gradual decrease of endoplasmic reticulum Ca(2+) stores by means of Ca-ATPase inhibition. The B12-induced increase in [Ca(2+)]i was not observed after depletion of intracellular Ca(2+) stores, induced by addition of 2',5'-di(tert-butyl)-1,4-benzohydroquinone (BHQ), an inhibitor of endoplasmic reticulum Ca (2+)-ATPase, concanavalin A, or arachidonic acid. These studies show that vitamin B12 regulates [Ca(2+)]i via several different mechanisms at different B12 concentrations. Participation of G proteins and calmodulin activity in B12-mediated [Ca(2+)]i increase is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bcmd.2001.0450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!