Affinity alkylation of the Trp-B4 residue of the beta -subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130.

J Biol Chem

Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Published: March 2002

Glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130 (C130) was irreversibly inhibited in a time-dependent manner by two substrate analogs bearing side chains of variable length, namely 7beta-bromoacetyl aminocephalosporanic acid (BA-7-ACA) and 7beta-3-bromopropionyl aminocephalosporanic acid (BP-7-ACA). The inhibition of the enzyme with BA-7-ACA was attributable to reaction with a single amino acid residue within the beta-subunit proven by comparative matrix assisted laser desorption/ionization-time of flight mass spectrometry. Further mass spectrometric analysis demonstrated that the fourth tryptophan residue of the beta-subunit, Trp-B4, was alkylated by BA-7-ACA. By (1)H-(13)C HSQC spectroscopy of C130 labeled by BA-2-(13)C-7-ACA, it was shown that tryptophan residue(s) in the enzyme was alkylated, forming a carbon-carbon bond. Replacing Trp-B4 with other amino acid residues caused increases in K(m), decreases in k(cat), and instability of enzyme activity. None of the mutant enzymes except W-B4Y could be affinity-alkylated, but all were competitively inhibited by BA-7-ACA. Kinetic studies revealed that both BA-7-ACA and BP-7-ACA could specifically alkylate Trp-B4 of C130 as well as Tyr-B4 of the mutant W-B4Y. Because these alkylations were energy-requiring under physiological conditions, it is likely that the affinity labeling reactions were catalyzed by the C130 enzyme itself. The Trp-B4 residue is located in the middle of a characteristic alphabetabetaalpha sandwich structure. Therefore, a large conformational alteration during inhibitor binding and transition state formation is likely and suggests that a major conformational change is induced by substrate binding during the course of catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M108683200DOI Listing

Publication Analysis

Top Keywords

trp-b4 residue
8
glutaryl 7-aminocephalosporanic
8
7-aminocephalosporanic acid
8
acid acylase
8
acylase pseudomonas
8
pseudomonas 130
8
aminocephalosporanic acid
8
amino acid
8
residue beta-subunit
8
acid
6

Similar Publications

Affinity alkylation of the Trp-B4 residue of the beta -subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130.

J Biol Chem

March 2002

Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130 (C130) was irreversibly inhibited in a time-dependent manner by two substrate analogs bearing side chains of variable length, namely 7beta-bromoacetyl aminocephalosporanic acid (BA-7-ACA) and 7beta-3-bromopropionyl aminocephalosporanic acid (BP-7-ACA). The inhibition of the enzyme with BA-7-ACA was attributable to reaction with a single amino acid residue within the beta-subunit proven by comparative matrix assisted laser desorption/ionization-time of flight mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!