In Schwann cells (SC), myelination is controlled by the transcription factor gene Krox20/Egr2. Analysis of cis-acting elements governing Krox20 expression in SC revealed the existence of two separate elements. The first, designated immature Schwann cell element (ISE), was active in immature but not myelinating SC, whereas the second, designated myelinating Schwann cell element (MSE), was active from the onset of myelination to adulthood in myelinating SC. In vivo sciatic nerve regeneration experiments demonstrated that both elements were activated during this process, in an axon-dependent manner. Together the activity of these elements reproduced the profile of Krox20 expression during development and regeneration. Genetic studies showed that both elements were active in a Krox20 mutant background, while the activity of the MSE, but likely not of the ISE, required the POU domain transcription factor Oct6 at the time of myelination. The MSE was localised to a 1.3 kb fragment, 35 kb downstream of Krox20. The identification of multiple Oct6 binding sites within this fragment suggested that Oct6 directly controls Krox20 transcription. Taken together, these data indicate that, although Krox20 is expressed continuously from 15.5 dpc in SC, the regulation of its expression is a biphasic, axon-dependent phenomenon involving two cis-acting elements that act in succession during development. In addition, they provide insight into the complexity of the transcription factor regulatory network controlling myelination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.129.1.155 | DOI Listing |
J Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China.
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
Introduction: Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!