We have generated an epidermis-specific desmoplakin (DP) mouse knockout, and show that epidermal integrity requires DP; mechanical stresses to DP-null skin cause intercellular separations. The number of epidermal desmosomes in DP-null skin is similar to wild type (WT), but they lack keratin filaments, which compromise their function. DP-null keratinocytes have few desmosomes in vitro, and are unable to undergo actin reorganization and membrane sealing during epithelial sheet formation. Adherens junctions are also reduced. In vitro, DP transgene expression rescues these defects. DP is therefore required for assembly of functional desmosomes, maintaining cytoskeletal architecture and reinforcing membrane attachments essential for stable intercellular adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb1201-1076 | DOI Listing |
PLoS One
March 2025
Food Technology and Process Engineering, Oda Bultum University, Chiro, Ethiopia.
This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
April 2025
Protein Structure Function Research Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
Three multicomponent systems, namely, 2,4-diamino-6-phenyl-1,3,5-triazine-nicotinic acid (DAPT-NA), CHN·CHNO, (I), 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen malonate (DAPT-MMA), CHN·CHO, (II), and 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen (+)-dibenzoyl-D-tartarate (DAPT-DBTA), CHN·CHO, (III), have been synthesized and characterized via single-crystal X-ray diffraction, and their supramolecular interactions have been analysed. The formation of cocrystal (I) and salts (II) and (III) was confirmed through the widening of the C-N-C bond angle of the triazine moiety of 2,4-diamino-6-phenyl-1,3,5-triazine and the difference in the C-O bond distances between the carboxyl and carboxylate groups of the respective carboxylic acids. Cocrystal (I) and salt (II) form robust homomeric and heteromeric R(8) ring motifs through primary acid-base interactions and complementary base pairing.
View Article and Find Full Text PDFCell Transplant
March 2025
Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy.
Diabetic foot ulcers (DFUs) are associated with a high risk of amputations and a 50% 5-year survival rate due at least in part to the limited angiogenic and wound healing capacity of patients with diabetes. Cell therapy via intramuscular injection of peripheral blood mononuclear cells showed encouraging but limited results. Such limitations may arise from the limited ability of therapeutic cells to adhere to the target tissue.
View Article and Find Full Text PDFFront Mol Biosci
February 2025
Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Protein stability is a crucial characteristic that influences both protein activity and structure and plays a significant role in several diseases. Cu/Zn superoxide dismutase 1 (SOD1) mutations serve as a model for elucidating the destabilizing effects on protein folding and misfolding linked to the lethal neurological disease, amyotrophic lateral sclerosis (ALS). In the present study, we have examined the structure and dynamics of the SOD1 protein upon two ALS-associated point mutations at the surface (namely, E49K and R115G), which are located in metal-binding loop IV and Greek key loop VI, respectively.
View Article and Find Full Text PDFLangmuir
March 2025
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
We report the discovery and in-depth investigation of interfacial crystallization (IFC), the assembly and formation of membrane-like crystalline sheets from both chiral amino acid and achiral -substituted glycine "peptoid" amide monomers selectively at vapor-liquid and liquid-liquid interfaces. This is the first assembly process known to be shared by two peptidomimic families of molecules with crucial backbone differences. A series of AFM, SEM, TOF-SIMS, FTIR, X-ray crystallography, counterion screening experiments, QM calculations, and MD simulation studies identified that IFC is based on the assembly of single monomer layers with alternating molecular orientations, which results in bilayers of unit thickness 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!