Atmospheric CO2 from fossil plant cuticles.

Nature

Forschungsstellle für Paläobotanik, Geologisch-Paläontogisches Institut, Westfälische Wilhelms-Universität, Münster, Germany.

Published: January 2002

Plants respond to changes in atmospheric carbon dioxide levels by regulating the number of stomata in their leaves. In his reconstruction of a continuous, 300-million-year record of atmospheric CO2, Retallack bases his curve on stomatal counts of fossil plant cuticles taken from published micrographs. However, the preservation of cuticles from Permian times is generally too fragmentary for the stomatal index to be reliably determined, the micrographs used could have biased the results, and there are important errors in the supplementary data - all of which cast doubt on the Permian part of Retallack's record.

Download full-text PDF

Source
http://dx.doi.org/10.1038/415038aDOI Listing

Publication Analysis

Top Keywords

atmospheric co2
8
fossil plant
8
plant cuticles
8
co2 fossil
4
cuticles plants
4
plants respond
4
respond changes
4
changes atmospheric
4
atmospheric carbon
4
carbon dioxide
4

Similar Publications

Catalytic Hydrogenation of CO by Direct Air Capture to Valuable C1 Products Using Homogenous Catalysts.

Chem Asian J

January 2025

Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462066, India.

Growing atmospheric CO concentrations are a global concern and a primary factor contributing to global warming. Development of integrated CO capture and conversion protocols is necessary to mitigate this alarming challenge. Though CO hydrogenation to produce formic acid and methanol has seen many strides in the past decades, most studies utilize pure CO for this transformation.

View Article and Find Full Text PDF

2D monolayer electrocatalysts for CO electroreduction.

Nanoscale

January 2025

Institute of Energy Power Innovation, North China Electric Power University, 2 Benigno Road, Beijing 102206, P. R. China.

The electrocatalytic carbon dioxide reduction reaction (CORR) is an attractive method for converting atmospheric CO into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials.

View Article and Find Full Text PDF

The study evaluated the application of a novel high-pressure microbial inactivation method combining dense carbon dioxide with modified atmosphere packaging on organic fresh-cut squash (Cucurbita moschata). Approximately 4 g or 32 g of squash was packed in plastic pouches filled with CO to test two different gas-to-product ratios and treated with the high-pressure method at previously optimized process conditions (45 °C, 6.0 MPa and 40 min).

View Article and Find Full Text PDF

Utilization of carbon dioxide (CO) as a C1 feedstock to synthesize value-added chemicals using a catalyst made from earth-abundant elements and under mild conditions is a sustainable approach toward carbon neutrality but difficult to achieve. Herein, the CoAlO/AlO composite catalyst is developed and used for the light-driven epoxide to value-added cyclic carbonate conversion using CO. CoAlO/AlO composite catalysts (% Co-AlO) are prepared by calcining cobalt-incorporated Al-oxy-hydroxide at 500 °C under an air atmosphere.

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!