From transcription to translation, mRNA is complexed with heterogeneous nuclear ribonucleoproteins (hnRNP proteins) that mediate mRNA processing, export from the nucleus, and delivery into the cytoplasm. Although the mechanism is unknown, export of mature mRNA from the nucleus is a critical regulatory step in gene expression. Analyses of hnRNP proteins have shown that many of these proteins are required for this essential cellular process. In this study, we characterize the Saccharomyces cerevisiae Nab2 protein, which was first identified as a poly(A) RNA-binding protein (Anderson, J. T., Wilson, S. M., Datar, K. V., and Swanson, M. S. (1993) Mol. Cell. Biol. 13, 2730-2741). Our work indicates that poly(A) RNA export from the nucleus is dependent upon a functional Nab2 protein; correspondingly, export of Nab2p from the nucleus is dependent upon ongoing RNA polymerase II transcription. Furthermore, we show that Nab2p is modified within its RGG domain by the type I protein-arginine methyltransferase, Hmt1p. Our experiments demonstrate that arginine methylation is required for the export of Nab2p from the nucleus and therefore establish an in vivo effect of this modification. Overall, these experiments provide evidence that Nab2p is an hnRNP protein that is required for poly(A) RNA export and whose export from the nucleus is regulated by Hmt1p.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M110053200 | DOI Listing |
Nat Commun
January 2025
School of Infection and Immunity, University of Glasgow, Glasgow, Scotland, UK.
Mitochondrial ribosomes (mitoribosomes) are essential, and their function of synthesising mitochondrial proteins is universal. The core of almost all mitoribosomes is formed from a small number of long and self-folding rRNA molecules. In contrast, the mitoribosome of the apicomplexan parasite Toxoplasma gondii assembles from over 50 extremely short rRNA molecules.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia.
View Article and Find Full Text PDFCommun Biol
January 2025
Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK.
Single-cell transcriptomics, which utilises barcodes and unique molecular identifiers (UMIs) for polyA+ mRNA capture, is compromised by oligonucleotide synthesis errors. To address this, we modified the oligonucleotide capture design and integrated an interposed anchor between the barcode and the UMI. This design significantly reduces the need to discard reads due to synthesis inaccuracies.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
Although rare non-coding variants (RVs) play crucial roles in complex traits and diseases, understanding their mechanisms and identifying disease-associated RVs continue to be major challenges. Here we constructed a comprehensive atlas of alternative polyadenylation (APA) outliers (aOutliers), including 1334 3' UTR and 200 intronic aOutliers, from 15,201 samples across 49 human tissues. These aOutliers exhibit unique characteristics from transcription or splicing outliers, with a pronounced RV enrichment.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!