ATP-bound states of GroEL captured by cryo-electron microscopy.

Cell

Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, United Kingdom.

Published: December 2001

The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(01)00617-1DOI Listing

Publication Analysis

Top Keywords

binding atp
8
switching intersubunit
8
intersubunit salt
8
salt bridge
8
atp binding
8
binding
5
atp-bound states
4
states groel
4
groel captured
4
captured cryo-electron
4

Similar Publications

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

ATP synthase dysregulation has been implicated in many diseases, including cancer and neurodegenerative diseases. Whilst ATP synthase-targeting compounds have been reported, most are large or polar compounds and lack appropriate properties for a CNS drug. We designed, synthesised, and evaluated a novel series of ATP synthase targeting compounds, resulting in a 1,3,4-oxadiazin-5-one scaffold with improved physiochemical properties.

View Article and Find Full Text PDF

The ABCB4 gene encodes multidrug resistance protein 3(MDR3), which is a phosphatidylcholine(PC) transfer enzyme that transfers lecithin from the inner part of the phospholipid bilayer to the extracellular bile. The occurrence of intrahepatic cholestasis of pregnancy(ICP) is closely related to ABCB4 variants, but there is limited research on this topic in southern Anhui, China. We sequenced ABCB4 in pregnant women with ICP and healthy pregnant women to explore the relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!