The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107-118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0097-8485(01)00106-1DOI Listing

Publication Analysis

Top Keywords

subcellular location
16
neural network
8
protein subcellular
8
protein
5
subcellular
5
artificial neural
4
network model
4
model predicting
4
predicting protein
4
location
4

Similar Publications

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Plant lectin receptor-like kinases (LecRLKs) are plant membrane protein receptor kinases. Lectin-like receptor kinases play a crucial role in regulating plant growth, development, and responses to environmental stimuli. It can rapidly respond to both biotic and abiotic stresses while mediating mechanisms of plant immune responses.

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!