Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent data show that proinflammatory stimuli may modify significantly ion transport in the airway epithelium and therefore the properties of the airway surface fluid. We have studied the effect of IL-4, a cytokine involved in the pathogenesis of asthma, on transepithelial ion transport in the human bronchial epithelium in vitro. Incubation of polarized bronchial epithelial cells with IL-4 for 6-48 h causes a marked inhibition of the amiloride-sensitive Na(+) channel as measured in short circuit current experiments. On the other hand, IL-4 evokes a 2-fold increase in the current activated by a cAMP analog, which reflects the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, IL-4 enhances the response to apical UTP, an agonist that activates Ca(2+)-dependent Cl(-) channels. These effects are mimicked by IL-13 and blocked by an antagonist of IL-4Ralpha. RT-PCR experiments show that IL-4 elicits a 7-fold decrease in the level of the gamma amiloride-sensitive Na(+) channel mRNA, one of the subunits of the amiloride-sensitive Na(+) channel, and an increase in CFTR mRNA. Our data suggest that IL-4 may favor the hydration of the airway surface by decreasing Na(+) absorption and increasing Cl(-) secretion. This could be required to fluidify the mucus, which is hypersecreted during inflammatory conditions. On the other hand, the modifications of ion transport could also affect the ion composition of airway surface fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.168.2.839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!