The aim of this work was to examine the segmental motoneuron activity as a possible mechanism of tremor generation. Eighty-three patients with different types of tremor (25 with Parkinsonian, 29 with essential, and 30 with enhanced physiological tremor due to anxiety), 25 Parkinsonian patients without tremor and 30 healthy volunteers were examined. The tremor was studied clinically and by electromyography in all limb positions. The F wave was examined for assessment of motoneuron activity. The wave was recorded after stimulation of the ulnar, median, tibial and fibular nerves. The maximal and mean F wave amplitudes, frequency of occurrence and number of phases were increased, and the duration was prolonged in all group of patients as compared to the healthy persons. The maximal and the mean F/M amplitude ratios, as well as the Fmean./Fmax amplitude ratio were increased in all groups of patients. All F wave parameters were most altered in Parkinsonian tremor patients followed by patients with rigidity. In conclusion increased motoneuron activity participates in generation of different types of tremor and in Parkinsonian rigidity.
Download full-text PDF |
Source |
---|
J Neurophysiol
January 2025
School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.
The purpose was to assess whether visual feedback of torque contributes to motor unit (MU) firing rate reduction observed during post-activation potentiation (PAP) of skeletal muscle. From 15 participants 23 MUs were recorded with intramuscular fine-wire electrodes from the tibialis anterior during isometric dorsiflexion contractions at 20% of maximum, with and without both PAP and visual feedback of torque. A 5s maximal voluntary contraction (MVC) was used to induce PAP, and evoked twitch responses were assessed before and after.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Division, Department of Psychological and Brain Sciences, Boston University, Boston, MA.
Plans are formulated and refined throughout the period leading up to their execution, ensuring that the appropriate behaviors are enacted at the appropriate times. While existing evidence suggests that memory circuits convey the passage of time through diverse neuronal responses, it remains unclear whether the neural circuits involved in planning exhibit analogous temporal dynamics. Using publicly available data, we analyzed how activity in the mouse frontal motor cortex evolves during motor planning.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!