AI Article Synopsis

  • XK469 is a new antitumor agent effective against various tumors, identified as a topoisomerase II beta poison similar to m-AMSA.
  • The study utilized human HCT-116 colon tumor cells, showing that XK469 has low cytotoxicity but acts as a phase-specific cell cycle blocker linked to increased cyclin B1, cyclin A, and p53 levels.
  • Unlike m-AMSA, XK469 promotes the accumulation of cyclin B1 by inhibiting its ubiquitination without inducing apoptosis or activating caspases in the treated cells.

Article Abstract

XK469 (NSC 697887) is a novel antitumor agent with broad activity against a variety of tumors. Previous studies suggest that XK469 is a topoisomerase II beta poison with functional activity similar to that of 4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA). The goal of our study was to investigate its mechanism of action further using a human HCT-116 (H116) colon tumor cell model. Concentration-survival curves with continuous exposure indicated that XK469 had low cytotoxic activity against H116 cells. Cell cycle analysis revealed that XK469 is a phase-specific cell cycle blocker that is associated with increased levels of cyclin B1, cyclin A and p53 but not CDK1 (cdc2) or cyclin E. In contrast, treatment of H116 cells with m-AMSA caused a total degradation of both cyclin A and B1 but enhanced expression of cyclin E and p53. Accumulation of cyclin B1 in XK469-treated cells was correlated with the inhibition of cyclin B1 ubiquitination, a metabolic process mandatory for proteasome-mediated protein turnover. However, no inhibition of cyclin B1 ubiquitination was detected in cells treated with m-AMSA or colchicine, a known mitotic inhibitor. Furthermore, unlike m-AMSA, XK469 did not induce caspase activation or apoptotic cell death in H116 cells. Our results suggest that XK469 is a phase-specific cell cycle inhibitor with a unique mechanism of action that is correlated with the inhibition of cyclin B1 ubiquitination and its accumulation at early M phase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.1570DOI Listing

Publication Analysis

Top Keywords

inhibition cyclin
16
cyclin ubiquitination
16
correlated inhibition
12
h116 cells
12
cell cycle
12
cyclin
10
novel antitumor
8
antitumor agent
8
mechanism action
8
xk469 phase-specific
8

Similar Publications

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.

Methods: ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a complex gynecological endocrinological condition that significantly impacts women's fertility during their reproductive lifespan. The causes of PCOS are multifaceted, and its pathogenesis is not yet clear. This study established a rat model of PCOS and, in conjunction with clinical samples and database data, analysed the role of claudin 11 (CLDN11) in follicular granulosa cells (GCs) in regulating the proliferation of GCs.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!