Cloning and expression of a chloride-dependent Na+-H+ exchanger.

J Biol Chem

Department of Internal Medicine, Yale University, New Haven, Connecticut 06520-8019, USA.

Published: March 2002

Electroneutral Na(+)-H(+) exchange is present in virtually all cells, mediating the exchange of extracellular Na(+) for intracellular H(+) and, thus, plays an important role in the regulation of intracellular pH, cell volume, and transepithelial Na(+) absorption. Recent transport studies demonstrated the presence of a novel chloride-dependent Na(+)-H(+) exchange in the apical membrane of crypt cells of rat distal colon. We describe the cloning of a 2.5-kb full-length cDNA from rat distal colon that encodes 438 amino acids and has six putative transmembrane spanning domains. Of the 438 amino acids 375 amino acids at the N-terminal region are identical to Na(+)-H(+) exchange (NHE)-1 isoform with the remaining 63 amino acids comprising a completely novel C terminus. In situ hybridization revealed that this transcript is expressed in colonic crypt cells, whereas Northern blot analysis established the presence of its 2.5-kb mRNA in multiple tissues. Despite its much smaller size compared with all other known Na(+)-H(+) exchange isoforms, NHE-deficient PS120 fibroblasts stably transfected with this cDNA exhibited Na(+)-dependent intracellular pH recovery to an acid load that was chloride-dependent and inhibited both by 5-ethylisopropylamiloride, an amiloride analogue, and by 5'-nitro-2-(3-phenylproplyamino)benzoic acid, a Cl(-) channel blocker, but only minimally affected by 25 microm 3-methylsulfonyl-4piperidonbenzoylguanidine, an NHE-1 and NHE-2 isoform inhibitor. In contrast to other Na(+)-H(+) exchange isoforms in colonic epithelial cells, chloride-dependent Na(+)-H(+) exchange mRNA abundance was increased by dietary sodium depletion. Based on these results we predict that chloride-dependent Na(+)-H(+) exchange represents a new class of Na(+)-H(+) exchangers that may regulate ion transport in several organs.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110852200DOI Listing

Publication Analysis

Top Keywords

na+-h+ exchange
28
chloride-dependent na+-h+
16
amino acids
16
na+-h+
9
exchange
8
crypt cells
8
rat distal
8
distal colon
8
438 amino
8
exchange isoforms
8

Similar Publications

Functional epitope mapping of cell surface glucose-regulated protein 94: A combinatorial approach for therapeutic targeting.

Int J Biol Macromol

January 2025

Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea. Electronic address:

Glucose-regulated protein 94 (GRP94) overexpression plays a critical role in tumor cell survival across various cancers. Previously, we developed K101.1, a fully human antibody targeting cell surface GRP94, which effectively inhibits tumor angiogenesis in colorectal cancer (CRC).

View Article and Find Full Text PDF

Background: Military-civilian partnerships (MCP) provide a bidirectional exchange of information and trauma best practices. In 2021, Penn Presbyterian Medical Center and the U.S.

View Article and Find Full Text PDF

Exosome Isolation Using Chitosan Oligosaccharide Lactate-1-Pyrenecarboxylic Acid-Based Self-Assembled Magnetic Nanoclusters.

Adv Healthc Mater

July 2024

Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.

Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented.

View Article and Find Full Text PDF

Ectomycorrhizal (ECM) fungi are key players in forest carbon (C) sequestration, receiving a substantial proportion of photosynthetic C from their forest tree hosts in exchange for plant growth-limiting soil nutrients. However, it remains unknown whether the fungus or plant controls the quantum of C in this exchange, nor what mechanisms are involved. Here, we aimed to identify physiological and genetic properties of both partners that influence ECM C transfer.

View Article and Find Full Text PDF

The topological Hall effect has been observed in magnetic materials of complex spin structures or bilayers of trivial magnets and strong spin-orbit-coupled systems. In view of current attention on dissipationless topological electronics, the occurrence of the topological Hall effect in new systems or by an unexpected mechanism is fascinating. Here, we report a robust topological Hall effect generated in bilayers of a ferromagnet and a noncoplanar antiferromagnet, from the interfacial Dzyaloshinskii-Moriya interaction due to the exchange coupling of magnetic layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!