Angiostatin effectively blocks tumor angiogenesis through still poorly understood mechanisms. Given the close association between immune and vascular regulation, we investigated the effects of angiostatin on angiogenesis-associated leukocytes. Angiostatin inhibited the migration of monocytes and, even more markedly, neutrophils. Angiostatin blocked chemotaxis of neutrophils to CXCR2 chemokine receptor agonists (IL-8, MIP-2, and GROalpha), formyl-Met-Leu-Phe (fMLP), and 12-O-tetradecanoylphorbol 13-acetate, and repressed fMLP-induced mitochondrial activity. Two different angiostatin forms (kringles 1-4 and 1-3) were effective, whereas whole plasminogen had no effect. IL-8, MIP-2, and GROalpha induced intense angiogenic reactions in vivo, but no angiogenic response to these factors was observed in neutropenic mice, demonstrating an essential role for neutrophils. Angiostatin potently inhibited chemokine-induced angiogenesis in vivo, and consistent with in vitro observations, both angiostatin forms were active and whole plasminogen had little effect. Angiostatin inhibition of angiogenesis in vivo was accompanied by a striking reduction in the number of recruited leukocytes. In vivo, the inflammatory agent lipopolysaccharide also induced extensive leukocyte infiltration and angiogenesis that were blocked by angiostatin. Neutrophils expressed mRNAs for ATP synthase and angiomotin, two known angiostatin receptors. These data show that angiostatin directly inhibits neutrophil migration and neutrophil-mediated angiogenesis and indicate that angiostatin might inhibit inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.01-0651fjeDOI Listing

Publication Analysis

Top Keywords

angiostatin
13
neutrophils angiostatin
8
il-8 mip-2
8
mip-2 groalpha
8
angiostatin forms
8
angiogenesis vivo
8
angiogenesis
6
neutrophils
5
neutrophils key
4
key cellular
4

Similar Publications

With the ongoing rise in the incidence of inflammatory bowel disease (IBD), its extraintestinal manifestations have garnered significant attention. IBD-related arthritis is notable for its insidious onset and unpredictability, presenting considerable challenges for clinical diagnosis and management. Factors such as gut microbiota, plasma proteins, inflammatory proteins, and biomarkers found in blood and urine may be closely associated with IBD-related arthritis.

View Article and Find Full Text PDF

In recent years, the chorioallantoic membrane (CAM) has emerged as a crucial component of biocompatibility testing for biomaterials designed for regenerative strategies and tissue engineering applications. This study explores angiogenic potential of an innovative acellular and porous biopolymer scaffold, based on polyhydroxybutyrate and chitosan (PHB/CHIT), using the ex ovo quail CAM assay as an alternative to the conventional chick CAM test. On embryonic day 6 (ED6), we placed the tested biomaterials on the CAM alone or soaked them with various substances, including vascular endothelial growth factor (VEGF-A), saline, or the endogenous angiogenesis inhibitor Angiostatin.

View Article and Find Full Text PDF

Objective: Coronary artery disease remains a leading cause of morbidity and mortality worldwide. Patients with advanced coronary artery disease who are not eligible for endovascular or surgical revascularization have limited options. Extracellular vesicles have shown potential to improve myocardial function in preclinical models.

View Article and Find Full Text PDF
Article Synopsis
  • PAI-1 is associated with blood clotting issues and endothelial dysfunction in severe COVID-19, and certain genetic variations can affect its expression.
  • Clinical studies on COVID-19 patients found that while comorbidities didn’t correlate with specific genotypes, the 4G/5G polymorphism showed differences in fibrinolytic factors and IL-1β levels.
  • The 4G4G genotype was linked to high PAI-1 levels and suppressed fibrinolysis, while inflammation-related endothelial dysfunction was a risk for those with the 5G5G genotype.
View Article and Find Full Text PDF

Tumor growth depends on angiogenesis, a process by which new blood vessel are formed from pre-existing normal blood vessels. Proteolytic fragments of plasminogen, containing varying numbers of plasminogen kringle domains, collectively known as angiostatin, are a naturally occurring inhibitor of angiogenesis and inhibit tumor growth. We have developed an "affinity-capture reactor" that enables a single-step method for the production/purification of an angiostatin-like plasminogen fragment from human plasma using an immobilized bacterial metalloproteinase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!