Previously, we have demonstrated age-associated alterations in transmembrane signaling. One of the most reproducible alterations found in the immune response with aging is the decrease of lymphocyte proliferation on stimulation with various different mitogens. Here, we confirm that proliferative responses to stimulation with phytohaemagglutin (PHA), recombinant human IL-2, or anti-CD3 monoclonal antibody are all greater in the young (20-25 years) than old (60-87 years) population. We attempted to modulate the proliferative response using various agents acting at different levels of transmembrane signaling (pertussis toxin, cholera toxin, isoproterenol, PMA, Ca ionophore A23187), as well as at the level of the lymphocyte plasma membrane (methyl-beta-cyclodextrin, MBCD), or by using antioxidant vitamins (Vitamin E or C). None of these agents was able to restore effectively the proliferative response of lymphocytes from the aged to the level of young subjects. Even the combination of A23187 and PMA acting directly on calcium metabolism and protein kinase C activity was insufficient to restore the decreased mitogenic capacity of T cells from elderly subjects. Cyclodextrin, which decreases the cholesterol content of the membrane, increased the proliferative response of lymphocytes of elderly subjects, but not to the level of the young. Vitamin E had a very strong inhibitory effect on lymphocyte stimulation in both the age groups, except in combination with MBCD in T cells of the elderly, while Vitamin C had no significant modulatory effect. MAPK ERK and p38 activation was found to be decreased with aging in T cells after anti-CD3 mAb stimulation. Vitamin E but not Vitamin C strongly inhibited MAPK ERK or p38 activation. The direct activation of certain molecules or the modulation of the cholesterol content of the membrane seems to be effective immunomodulatory interventions with aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0531-5565(01)00204-2 | DOI Listing |
Cells
January 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
Objectives: Adjuvants are some of the most important components used for vaccine formulation. In addition, the efficacy of vaccines is highly dependent on the nature of the adjuvants used. Therefore, new adjuvant formulations may help develop more potent vaccines.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.
Background: Despite many years of investigation into mesenchymal stem cells (MSCs) and their potential for treating inflammatory conditions such as COVID-19, clinical outcomes remain variable due to factors like donor variability, different tissue sources, and diversity within MSC populations. Variations in MSCs' secretory and proliferation profiles, and their proteomic and transcriptional characteristics significantly influence their therapeutic potency, highlighting the need for enhanced characterization methods to better predict their efficacy. This study aimed to evaluate the biological characteristics of MSCs from different tissue origins, selecting the most promising line for further validation in a K18-hACE2 mouse model of SARS-CoV-2 infection.
View Article and Find Full Text PDFLeukemia
January 2025
Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy.
Introduction: Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!