Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the release of recombinant human interleukin-2 (rhIL-2) from methacrylated dextran (dex-MA) and (lactate-)hydroxyethyl methacrylated dextran (dex-(lactate-)HEMA) hydrogels with varying crosslink density was investigated. Hydrogels derived from dex-MA are stable under physiological conditions (pH 7 and 37 degrees C), whereas dex-HEMA and dex-lactate-HEMA hydrogels degrade due to the presence of hydrolytically sensitive esters in the crosslinks of the gels. The protein release profiles both the non-degradable and degradable dextran-based hydrogels showed that with increasing crosslink density of the gel, the release of rhIL-2 decreases. From dex-MA hydrogels with an initial water content above 70%, the rhIL-2 release followed Fickian diffusion, whereas from gels with an initial water content of 70% or lower the protein was fully entrapped in the hydrogel meshes. In contrast with non-degradable dex-MA hydrogels, degradable dex-lactate-HEMA gels with comparable network characteristics (degree of methacrylate substitution and initial water content) showed an almost zero-order, degradation controlled release of rhIL-2 in a time period of 5-15 days. This paper demonstrates that the release of rhIL-2 from non-degradable dex-MA and degradable dex-lactate-HEMA gels can be modulated by the crosslink density and/or the degradation characteristics of the hydrogel. Importantly, rhIL-2 was mainly released as monomer from the hydrogels and with good retention of its biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-3659(01)00483-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!