Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transcranial magnetic stimulation (TMS) exerts both excitatory and inhibitory effects on the stimulated neural tissue, although little is known about the neurobiological mechanisms by which it influences neuronal function. TMS has been used in conjunction with PET to examine interregional connectivity of human cerebral cortex. To help understand how TMS affects neuronal function, and how these effects are manifested during functional brain imaging, we simulated the effects of TMS on a large-scale neurobiologically realistic computational model consisting of multiple, interconnected regions that performs a visual delayed-match-to-sample task. The simulated electrical activities in each region of the model are similar to those found in single-cell monkey data, and the simulated integrated summed synaptic activities match regional cerebral blood flow (rCBF) data obtained in human PET studies. In the present simulations, the excitatory and inhibitory effects of TMS on both locally stimulated and distal sites were studied using simulated behavioral measures and simulated PET rCBF results. The application of TMS to either excitatory or inhibitory units of the model, or both, resulted in an increased number of errors in the task performed by the model. In experimental studies, both increases and decreases in rCBF following TMS have been observed. In the model, increasing TMS intensity caused an increase in rCBF when TMS exerted a predominantly excitatory effect, whereas decreased rCBF following TMS occurred if TMS exerted a predominantly inhibitory effect. We also found that regions both directly and indirectly connected to the stimulating site were affected by TMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/nimg.2001.0966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!