AI Article Synopsis

  • Eleven chiral naphthyl thiourea compounds were designed as non-nucleoside inhibitors (NNIs) targeting the HIV-1 reverse transcriptase enzyme, with 'R' stereoisomers showing significantly better fit and potency than 'S' isomers.
  • Molecular modeling suggested that 'R' stereoisomers had Ki values that were 10,000 times lower, indicating stronger binding and lower inhibitory concentration (IC50) values against recombinant RT.
  • The most promising 'R' stereoisomers effectively inhibited various HIV-1 strains in human cells, demonstrating higher potency than the standard drug nevirapine, highlighting the importance of stereochemistry in developing effective NNIs.

Article Abstract

Eleven chiral naphthyl thiourea (CNT) compounds were synthesized as non-nucleoside inhibitors (NNI) of the reverse transcriptase (RT) enzyme of HIV-1. Molecular modelling studies indicated that, because of the asymmetric geometry of the NNI binding pocket, the 'R' stereoisomers would fit the NNI binding pocket of the HIV-1 RT much better than the corresponding 'S' stereoisomers, as reflected by their 10(4)-fold lower Ki values. The 'R' stereoisomers of all 11 compounds inhibited the recombinant RT in vitro with lower IC50 values than their enantiomers. Of seven CNT compounds whose 'R' stereoisomers exhibited nanomolar IC50 values against recombinant RT, five were further evaluated for their ability to inhibit HIV-1 replication in human peripheral blood mononuclear cells (PBMC). All five 'R' stereoisomers were active anti-HIV agents and inhibited the replication of the HIV-1 strains HTLV-IIIB (NNI-sensitive), A17 (NNI-resistant, Y181C mutant RT) and A17Var (NNI-resistant, Y181C plus K103N mutant RT), as well as primary HIV-1 isolates from AIDS patients in human PBMC at nanomolar concentrations, whereas their enantiomers were inactive. The lead compounds, 1R and 5R, were 3 log more potent than the standard NNI drug nevirapine against the NNI-resistant HIV-1 strains. Our data establish the stereochemistry as a major determinant of the potency of this new class of NNI.

Download full-text PDF

Source
http://dx.doi.org/10.1177/095632020101200402DOI Listing

Publication Analysis

Top Keywords

'r' stereoisomers
16
stereochemistry major
8
major determinant
8
chiral naphthyl
8
naphthyl thiourea
8
cnt compounds
8
nni binding
8
binding pocket
8
ic50 values
8
hiv-1 strains
8

Similar Publications

Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine.

Chirality

January 2025

Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China.

Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.

View Article and Find Full Text PDF

LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics.

Biomed Chromatogr

February 2025

Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.

Praziquantel (PZQ) is the most effective treatment for schistosomiasis, commonly administered as a racemic mixture of the two enantiomers. Despite many reports on the pharmacokinetics of PZQ, the stereoselective pharmacokinetics of PZQ and its major metabolite 4-hydroxypraziquantel (4-OH-PZQ) remain poorly understood in goats. In this study, the chiral LC-MS/MS method was further optimized for separating and quantifying PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ and their enantiomers and then applied for the molecular pharmacokinetics of three analytes in black goat plasma.

View Article and Find Full Text PDF

The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.

View Article and Find Full Text PDF

Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.

View Article and Find Full Text PDF

Diverse Transient Chiral Dynamics in Evolutionary Distinct Photosynthetic Reaction Centers.

J Chem Theory Comput

January 2025

Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.

The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!