Electrophysiological studies of dorsal root ganglion (DRG) neurons, and the results of PCR, Northern blot and in situ hybridization analyses have demonstrated the molecular diversity of Na+ channels that operate in sensory neurons. Several subtypes of alpha-subunit have been detected in DRG neurons and transcripts encoding all three beta-subunits are also present. Interestingly, one alpha subunit, Na(v)1.8, is selectively expressed in C-fibre and Adelta fibre associated sensory neurons that are predominantly involved in damage sensing. Another channel, Na(v).3, is selectively up regulated in a variety of models of neuropathic pain. In this review we focus on Na+ channels that are selectively expressed in DRG neurons as potential analgesic drug targets. In the absence of subtype specific inhibitors, the production of null mutant mice provides useful information on the specialized functions of particular Na+ channels. A refinement of this approach is to delete Na+ channel genes flanked by lox-P sites in the sensory ganglia of adult animals, using viruses to deliver the bacteriophage Cre recombinase enzyme.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sensory neurons
12
drg neurons
12
na+ channels
12
selectively expressed
8
neurons
6
sodium channels
4
channels primary
4
sensory
4
primary sensory
4
neurons relationship
4

Similar Publications

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Diverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.

View Article and Find Full Text PDF

Truncated TrkB (TrkBT1), traditionally considered a dominant-negative regulator of full-length TrkB (TrkBTK+), remains poorly understood in peripheral sensory neurons, particularly nociceptors. Furthermore, sensory neuronal TrkB expression and function has been traditionally associated with non-nociceptive neurons, particularly Aδ low-threshold mechanoreceptors. This study challenges prevailing assumptions by demonstrating that TrkBT1 is the predominant TrkB isoform expressed in sensory neurons and plays a functional role in modulating neuronal activity.

View Article and Find Full Text PDF

The capsaicin receptor, TRPV1, mediates the detection of harmful chemical and thermal stimuli. Overactivation of TRPV1 can lead to cellular damage or death through excitotoxicity, a phenomenon associated with painful neuropathy and the paradoxical use of capsaicin as an analgesic. We exploited capsaicin-evoked death to conduct a systematic analysis of excitotoxicity through a genome-wide CRISPRi screen, thereby revealing a comprehensive network of regulatory pathways.

View Article and Find Full Text PDF

Developing populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!