The use of existing detecting systems developed for nuclear physics studies allows collecting data on particle and ion production cross-sections in reactions induced by Oxygen and Carbon beams, of interest for hadrontherapy and heavy-ion risk assessment. The MULTICS and GARFIELD apparatus, together with the foreseen experiments, are reviewed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

detecting systems
8
foreseen experiments
8
heavy-ion risk
8
risk assessment
8
nuclear detecting
4
systems lnl
4
lnl lns
4
lns foreseen
4
experiments provide
4
provide basic
4

Similar Publications

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

Development of an image quality evaluation system for bedside chest X-ray images using scatter correction processing.

Radiol Phys Technol

January 2025

Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa, Tokyo, 116-8551, Japan.

In plain radiography, scattered X-ray correction processing (Virtual Grid: VG) is used to estimate and correct scattered rays in images. We developed an objective evaluation system for bedside chest X-ray images using VG and investigated its usefulness. First, we trained the blind/referenceless image spatial quality evaluator (BRISQUE) on 200 images obtained by portable chest radiography.

View Article and Find Full Text PDF

Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.

View Article and Find Full Text PDF

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

Objective: To identify clusters of women with similar trajectories of breast density change over four longitudinal assessments and to examine the association between these trajectories and the subsequent risk of breast cancer.

Design: Retrospective cohort study.

Setting: Data from the national breast cancer screening programme, which is embedded in the National Health Insurance Service database in Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!