A goal of the study was to investigate cortical reorganization corresponding to inhibition of innate motor patterns during motor learning. Functional changes in the sensorimotor cortex during learned rearrangement of the natural diagonal pattern of postural adjustment (PA) accompanying a hindlimb movement into a new one, the so-called unilateral pattern, were studied in dogs by testing somatosensory evoked potentials (SEP) in response to stimulation of a forelimb during PA immediately before the limb movement onset. During PA the latency and the amplitude of several SEP components decreased. In general, changes in SEP were less pronounced in the learned unilateral pattern of postural adjustment in comparison with the innate diagonal pattern, but the difference was significant only for some SEP components. The SEP late positivity in the learned postural pattern was replaced by a negativity. The SEP changes were similar independently of whether the test stimulus was applied on the forelimb loaded or unloaded during postural adjustment. The data suggest that changes in interrelations between different neuronal populations in the sensorimotor cortex during formation and realization of a learned motor program can be reflected in SEP changes.
Download full-text PDF |
Source |
---|
Orthopadie (Heidelb)
January 2025
Klinik für Orthopädie, Unfall- und Handchirurgie, HELIOS Klinikum Krefeld, Lutherplatz 40, 47805, Krefeld, Deutschland.
Background: Obesity is increasingly being recognized as a significant risk factor for the development and worsening of back pain. In order to make possible adjustments to therapies and lifestyle, the relationship must first be understood.
Method: This article attempts to explain the relationship between obesity and back pain based on the existing literature.
J Sports Sci
January 2025
Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
Anticipatory postural adjustments (APAs) are responsible for a successful first step execution in handstand walking. This study evaluates gymnasts' ability to adapt their APAs and stepping parameters in response to adding/removing an external load over repeated handstand walking initiation trials. Eighteen gymnasts performed five handstand walking initiation trials without load (PRE), eight trials with an external load (LOAD) and five trials with removed load (POST).
View Article and Find Full Text PDFCureus
December 2024
Faculty of Medical Sciences, The University of the West Indies, St. Augustine, TTO.
A 29-year-old paint sprayer presented with mild lower back pain and fatigue related to prolonged standing and repetitive tasks in the first few weeks of pregnancy. An initial assessment included a review of her workstation, evaluation of posture, and standard prenatal tests such as routine blood work and ultrasound. These investigations showed normal fetal development and no complications.
View Article and Find Full Text PDFFront Physiol
January 2025
Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.
Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Sports Science, Zhejiang University, Hangzhou, Zhejiang, China.
Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!