A damaging effect of the neuroleptic haloperidol on thymocytes was studied in vivo. The integral state of energetic processes in the cells was described by the electric transmembrane potential of thymocytes delta psi equal to the sum of potential on the plasmic and mitochondrial membranes. The effect of haloperidol was also evaluated by the content of lipid peroxidation (LPO) products and by the structural and functional characteristics of thymocyte membranes (lipid viscosity, protein-lipid interaction). A single administration of haloperidol (0.4 mg/kg) decreased the delta psi of thymocytes and increases the viscosity of lipids in the cell membranes. The content of LPO products--primary (diene conjugates) and secondary (Schiff bases)--was not affected. The obtained results indicate that the combination of methods employed can be used for analysis of the structural and functional characteristics of blood cell membranes (in leukocytes and lymphocytes) for evaluating the side effects of haloperidol in the human organism.
Download full-text PDF |
Source |
---|
PLoS Genet
January 2025
Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.
Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.
View Article and Find Full Text PDFMol Med Rep
March 2025
Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‑Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.
Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Metastatic melanoma causes a high rate of mortality. We conducted an integrated analysis to identify critical regulators associated with the prognosis, pathogenesis, and targeted therapies of metastatic-melanoma. A microarray dataset, GSE15605, including 12 metastatic-melanoma and sixteen normal skin (NS) samples, were obtained from the GEO database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!