In this study, the authors investigated the relationship between the metabolism of clomipramine (C) and the genotypes of cytochrome P450 (CYP) CYP2C19 and CYP2D6. Fifty-one Japanese patients (18 men and 33 women) were administered 10 to 250 mg/day of C by mouth and maintained on the same daily dose of C for at least 2 weeks to obtain steady-state concentrations. Plasma levels of C and its metabolites N-desmethylclomipramine (DC), 8-hydroxyclomipramine, and 8-hydroxy-N-desmethylclomipramine (HDC) were determined by high-performance liquid chromatography. The allele frequencies of CYP2C19*2, CYP2C19*3, CYP2D6*5, and CYP2D6*10 were 27.5%, 12.8%, 2.9%, and 43.1%, respectively. Subjects who were homozygous for mutated alleles of CYP2C19 showed approximately 75% higher concentrations of C corrected by dose and body weight compared with those who were homozygous for wild-type alleles. Also, subjects who were homozygous for mutated alleles of CYP2C19 showed an approximately 68% higher value of C/DC compared with those who were homozygous for wild-type alleles. No significant difference in the ratio of DC/HDC was observed between subjects who were homozygous for mutated alleles of CYP2D6 and those who were homozygous for wild-type alleles. These results suggest that genotyping CYP2C19 is useful for grossly predicting the risk of getting high plasma concentrations of C and the low individual capacity to demethylate C because there is marked interindividual variability within each genotype. However, the genotyping of CYP2D6 is not useful for predicting the individual capacity to hydroxylate DC.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004714-200112000-00002DOI Listing

Publication Analysis

Top Keywords

subjects homozygous
12
homozygous mutated
12
mutated alleles
12
homozygous wild-type
12
wild-type alleles
12
cyp2c19 cyp2d6
8
metabolism clomipramine
8
alleles cyp2c19
8
compared homozygous
8
individual capacity
8

Similar Publications

Trichohepatoenteric syndrome (THES) is a rare genetic disorder inherited in an autosomal recessive manner. THES primarily leads to neonatal enteropathy, typically manifesting as severe, persistent diarrhea, distinctive facial features such as frontal bossing and a broad flat nasal bridge, woolly and fragile hair, immunodeficiency resulting in recurrent infections, failure to thrive (FTT), and liver complications including fibrosis or cirrhosis. This multisystem disorder is linked to mutations in the tetratricopeptide repeat domain 37 (TTC37) gene, also known as superkiller complex (SKIC) protein 3, responsible for THES type 1, and the Ski2-like ribonucleic acid (RNA) helicase (SKIV2L) gene, also known as SKIC2, responsible for THES type 2.

View Article and Find Full Text PDF

43 G > T polymorphism in the sucrase-isomaltase gene in the Chinese population prevents the glucose-lowering effect of acarbose.

Clin Biochem

January 2025

Clinical Medicine Research Center, Jiangxi Cancer Hospital & Institute (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, China; Jiangxi Clinical Research Center for Cancer, China; Jiangxi Key Laboratory of Translational Research for Cancer, Nanchang, China. Electronic address:

Background: Acarbose is an α-glucosidase inhibitor widely used clinically for its significant hypoglycemic effect, albeit with inter-individual variations in response. The sucrase-isomaltase (SI) enzyme is the primary target of acarbose. This study aims to investigate the impact of genetic polymorphisms in the SI gene on the pharmacodynamics of acarbose.

View Article and Find Full Text PDF

The worldwide incidence of colorectal cancer (CRC) is roughly two million new instances each year throughout the world, according to the World Health Organization 2022. CRC is the third most prevalent disease and the second most common cancer in terms of fatality. People diagnosed with colorectal cancer in the early stages have a five-year survival rate of roughly 95%, but people identified with the disease in the later stages have a survival rate of approximately 12%.

View Article and Find Full Text PDF

Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.

View Article and Find Full Text PDF

Glanzmann thrombasthenia (GT) is an autosomal recessive platelet functional bleeding disorder caused by mutations in the ITGA2B or ITGB3 genes, often presenting as mucocutaneous bleeding. GT typically presents in infancy, but this study reports a rare case of neonatal presentation in a female infant born to consanguineous parents. The mother, a 27-year-old woman with a family history of GT, presented at 36 weeks gestation for an elective cesarean due to a breech presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!