The ability of putative neuroprotective compounds to protect against white matter injury remains poorly investigated due to the lack of suitable methods for assessing white matter injury. This study was therefore designed to investigate the utility of Tau 1 (oligodendrocytes/axons), myelin basic protein (MBP; myelin) and amyloid precursor protein (APP; axons) immunohistochemistry in assessing white matter injury at various times following middle cerebral artery occlusion (MCAO) in the rat. Focal cerebral, ischaemia was induced in halothane-anaesthetised rats using an intraluminal thread model. At 24 h, 1 and 2 weeks following MCAO, white matter injury was assessed using Tau 1, APP, MBP and Luxol-fast blue staining and neuronal injury with cresyl fast violet (CFV). In histologically normal tissue MBP immunoreactivity was detected in myelinated fibre tracts, while Tau 1 and APP were axonally located. At 24 h following permanent MCAO, MBP, and Tau 1 staining remained relatively unchanged within the myelin and axonal compartments of the ischaemic region. In contrast, increased Tau 1 staining was apparent in oligodendrocytes within ischaemic tissue, while APP accumulated in axons surrounding the lesion. At 1 and 2 weeks following transient MCAO, Tau 1 and APP staining was markedly decreased within ischaemic tissue. Marked reduction in MBP levels within ischaemic tissue were not detected until 2 weeks following MCAO. The area of axonal injury as assessed by reduced Tau 1 or APP staining correlated with the area of neuronal damage as assessed by CFV staining. This study shows that MBP, Tau 1 and APP immunohistochemistry can be utilised to assess myelin and axonal integrity following sustained ischaemia using standard image analysis techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004010100416 | DOI Listing |
Ann Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Magn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Cogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.
Z Med Phys
January 2025
Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.
Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!