Selection for recombination in small populations.

Evolution

Department of Zoology, University of British Columbia, Vancouver, Canada.

Published: October 2001

The reasons that sex and recombination are so widespread remain elusive. One popular hypothesis is that sex and recombination promote adaptation to a changing environment. The strongest evidence that increased recombination may evolve because recombination promotes adaptation comes from artificially selected populations. Recombination rates have been found to increase as a correlated response to selection on traits unrelated to recombination in several artificial selection experiments and in a comparison of domesticated and nondomesticated mammals. There are, however, several alternative explanations for the increase in recombination in such populations, including two different evolutionary explanations. The first is that the form of selection is epistatic, generating linkage disequilibria among selected loci, which can indirectly favor modifier alleles that increase recombination. The second is that random genetic drift in selected populations tends to generate disequilibria such that beneficial alleles are often found in different individuals; modifier alleles that increase recombination can bring together such favorable alleles and thus may be found in individuals with greater fitness. In this paper, we compare the evolutionary forces acting on recombination in finite populations subject to strong selection. To our surprise, we found that drift accounted for the majority of selection for increased recombination observed in simulations of small to moderately large populations, suggesting that, unless selected populations are large, epistasis plays a secondary role in the evolution of recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0014-3820.2001.tb01310.xDOI Listing

Publication Analysis

Top Keywords

recombination
12
selected populations
12
increase recombination
12
sex recombination
8
increased recombination
8
modifier alleles
8
alleles increase
8
alleles individuals
8
populations
7
selection
6

Similar Publications

Erdheim Chester Disease with Calvarial Involvement: A rare case of Histiocytosis.

Turk Neurosurg

March 2024

SBÜ Gaziosmanpaşa Eğitim ve Araştırma Hastanesi.

Erdheim-Chester Disease is a rare systemic xanthogranulomatous infiltrating disease, characterized by lipid-laden histiocytes accumulating in various organs and almost always in bones. Etiology of the disease is still unknown. It may involve various organs and systems, such as musculoskeletal, cardiac, pulmonary, renal, gastrointestinal and central nervous system (CNS) as well as the skin.

View Article and Find Full Text PDF

In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

High defect concentrations at the interfaces are the basis of charge extraction losses and instability in perovskite solar cells. Surface engineering with organic cations is a common practice to solve this issue. However, the full implications of the counteranions of these cations for device functioning are often neglected.

View Article and Find Full Text PDF

Construction of Immune Single Domain Antibodies Library for Development of Specific Nanobodies Using Phage Display Strategy.

Recent Pat Biotechnol

January 2025

Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.

Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.

Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!