Activities of hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PDH), fructose-6-phosphate kinase (F6PK), glutamate dehydrogenase (GlutDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH) and glycerol-3-phosphate dehydrogenase (GPDH) were determined in tissue extracts of testes and ovaries of adult Dipetalogaster maximus (Uhler) and Triatoma infestans (Klug) (Hemiptera: Reduviidae), insect vectors of Chagas disease. The fine structure organization of the same organs were studied by electron microscopy. Results allow the following inferences: in testes from both species, most of the glucose would be utilized through the glycolytic pathway. Amino acid catabolism for energy purposes appears to be unimportant. The number of mitochondria and the development of the rough endoplasmic reticulum in cells of the spermatogenic line indicate the occurrence of active oxidative metabolism and protein synthesis; in ovaries, levels of G6PDH indicate the existence of an active pentose pathway which would supply the NADPH required for fat and ecdysteroid synthesis. Amino acid catabolism appears to be relatively more important in ovary than in testis. Fat and glycogen are stored in follicular cells of D. maximus; oocytes of both species contain numerous fat droplets. Abundant mitocondria are present in follicular cells and oocytes. A well developed rough endoplasmic reticulum and free ribosomes are also conspicuous in these cells. The malate/aspartate H-transfer system seemed to be relatively more important than the glycerophosphate shuttle in ovaries as well in testes.

Download full-text PDF

Source
http://dx.doi.org/10.4081/1639DOI Listing

Publication Analysis

Top Keywords

testes ovaries
8
ovaries adult
8
adult dipetalogaster
8
dipetalogaster maximus
8
maximus uhler
8
uhler triatoma
8
triatoma infestans
8
infestans klug
8
klug hemiptera
8
hemiptera reduviidae
8

Similar Publications

Full-length transcriptome analysis of male and female gonads in Japanese Eel (Anguilla japonica).

BMC Genomics

January 2025

State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.

Background: The Japanese eel (Anguilla japonica) holds significant economic value in East Asia, but limitations in understanding its reproductive biology have hindered advancements in artificial breeding techniques. Previous research has primarily focused on conserved sex differentiation genes, offering limited insights into the broader molecular mechanisms driving gonadal development and sexual dimorphism. To address these limitations, this study aims to investigate key genes and pathways involved in gonadal development through a comprehensive transcriptomic analysis of male and female eel gonads.

View Article and Find Full Text PDF

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice.

Mol Biol Rep

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.

Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.

View Article and Find Full Text PDF

Effects of tributyltin on placental and reproductive abnormalities in offspring.

Arch Endocrinol Metab

January 2025

Universidade Federal do Espírito Santo Departamento de Morfologia VitóriaES Brasil Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil.

Tributyltin (TBT) is an organotin compound and a common persistent environmental pollutant with endocrine-disrupting chemical (EDC) actions. It can accumulate in the environment at various concentrations throughout the food chain in the ecosystem, posing a risk to human health, especially during critical periods such as gestation and fetal and offspring development. In this review, we report the results of studies describing the consequences of TBT exposure on placental and reproductive parameters in offspring of both sexes.

View Article and Find Full Text PDF

Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!