Purpose: The aim of this study was to investigate the different pharmacokinetic behavior of surface-modified poly(methylmethacrylate) (PMMA) nanoparticles.
Methods: The particles were 14C-labeled and coated with polysorbate 80, poloxamer 407, and poloxamine 908. Plain particles served as control particles. In vivo studies were performed in three tumor models differing in growth, localization, and origin. Particle suspensions were administered via the tail vein, and at given time animals were killed and organs were dissected for determination of PMMA concentration.
Results: For the PMMA nanoparticles coated with poloxamer 407 or poloxamine 908, high and long-lasting concentrations were observed in the melanoma and at a lower level in the breast cancer model. In an intracerebrally growing glioma xenograft, the lowest concentrations that did not differ between the tumor-loaded and tumor-free hemispheres were measured. Organ distribution of the four investigated batches differed significantly. For instance, poloxamer 407- and poloxamine 908-coated particles circulated over a longer period of time in the blood, leading additionally to a higher tumor accumulation. In contrast, plain and polysorbate 80-coated particles accumulated mainly in the liver. The strong expression of vascular endothelial growth factor and Flk-1 in the melanoma correlated with high concentrations of PMMA in this tumor.
Conclusion: The degree of accumulation of PMMA nanoparticles in tumors depended on the particle surface properties and the specific growth differences of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1013094801351 | DOI Listing |
AAPS J
January 2025
Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption.
View Article and Find Full Text PDFVet Anaesth Analg
December 2024
Equine Research Institute, Japan Racing Association, Shimotsuke, Japan.
Objective: To investigate the pharmacodynamics and pharmacokinetics of rocuronium administered by bolus injection to sevoflurane-anesthetized horses.
Study Design: Prospective, experimental, crossover study.
Animals: Five healthy adult Thoroughbred horses (body mass 368-470 kg, three females and two males).
Br J Pharmacol
January 2025
Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Background And Purpose: The use of 'bath salts' drug preparations has been associated with high rates of toxicity and death. Preparations often contain mixtures of drugs, including multiple synthetic cathinones or synthetic cathinones and caffeine. Little is known about the interactions of 'bath salts' constituents and adverse effects often reported by users.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Orthopaedic clinic, Mehrad hospital, Tehran, Iran.
The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. Electronic address:
Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!