A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. | LitMetric

Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis.

J Biol Chem

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.

Published: March 2002

Mycolic acids are major components of the cell wall of Mycobacterium tuberculosis. Several studies indicate that functional groups in the acyl chain of mycolic acids are important for pathogenesis and persistence. There are at least three mycolic acid cyclopropane synthases (PcaA, CmaA1, and CmaA2) that are responsible for these site-specific modifications of mycolic acids. To derive information on the specificity and enzyme mechanism of the family of proteins, the crystal structures of CmaA1, CmaA2, and PcaA were solved to 2-, 2-, and 2.65-A resolution, respectively. All three enzymes have a seven-stranded alpha/beta fold similar to other methyltransferases with the location and interactions with the cofactor S-adenosyl-l-methionine conserved. The structures of the ternary complexes demonstrate the position of the mycolic acid substrate binding site. Close examination of the active site reveals electron density that we believe represents a bicarbonate ion. The structures support the hypothesis that these enzymes catalyze methyl transfer via a carbocation mechanism in which the bicarbonate ion acts as a general base. In addition, comparison of the enzyme structures reveals a possible mechanism for substrate specificity. These structures provide a foundation for rational-drug design, which may lead to the development of new inhibitors effective against persistent bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111698200DOI Listing

Publication Analysis

Top Keywords

mycolic acid
12
mycolic acids
12
crystal structures
8
acid cyclopropane
8
cyclopropane synthases
8
mycobacterium tuberculosis
8
cmaa1 cmaa2
8
bicarbonate ion
8
mycolic
6
structures
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!