Presenilin (PS) proteins control the proteolytic cleavage that precedes nuclear access of the Notch intracellular domain. Here we observe that a partial activation of the HES1 promoter can be detected in PS1/PS2 (PS1/2) double null cells using Notch1 Delta E constructs or following Delta 1 stimulation, despite an apparent abolition of the production and nuclear accumulation of the Notch intracellular domain. PS1/2-independent Notch activation is sensitive to Numblike, a physiological inhibitor of Notch. PS1/2-independent Notch signaling is also inhibited by an active gamma-secretase inhibitor in the low micromolar range and is not inhibited by an inactive analogue, similar to PS-dependent Notch signaling. However, experiments using a Notch1-Gal4-VP16 fusion protein indicate that the PS1/2-independent activity does not release Gal4-VP16 and is therefore unlikely to proceed via an intramembranous cleavage. These data reveal that a novel PS1/2-independent mechanism plays a partial role in Notch signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M108238200DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
notch
8
notch intracellular
8
intracellular domain
8
ps1/2-independent notch
8
identification characterization
4
characterization presenilin-independent
4
presenilin-independent notch
4
signaling presenilin
4
presenilin proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!