Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M110341200 | DOI Listing |
J Neurosci Methods
January 2025
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China; the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China. Electronic address:
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive stereotypical behavior and social impairment. Early diagnosis is essential for developing a treatment plan for autism. Although multi-site data can expand the dataset to facilitate the process of data analysis, data heterogeneity between sites and the large amount of data make data analysis difficult.
View Article and Find Full Text PDFJ Subst Use Addict Treat
January 2025
Department of Medicine, Oregon Health & Sciences University, Portland, OR, United States of America.
Introduction: People who use drugs (PWUD) are at risk of HIV infection, but the frequency and distribution of transmission-associated behaviors within rural communities is not well understood. Further, while interventions designed to more explicitly affirm individuals' sexual orientation and behaviors may be more effective, descriptions of behavior variability by orientation are lacking. We sought to describe how disease transmission behaviors and overdose risk vary by sexual orientation and activity among rural PWUD.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!