Antibodies to adenosine-5'-monophosphate were produced in rabbits by injecting a conjugate of the nucleotide (oxidized with periodate) with bovine serum albumin. Nucleotide-specific antibodies were isolated by affinity chromatography on oligoadenylic acids/agarose column. Pure immunoglobulin G antibodies were obtained by gel filtration on Sephadex G-200. These antibodies, as analyzed by double diffusion react with adenosine 5'-monophosphate--bovine serum albumin, slightly with inosine-5'-monophosphate conjugate and not at all with the other nucleotide conjugates. The association constants for adenosine-5'-monophosphate--antibody complex formation obtained by dialysis equilibrium and fluorescence measurements, are in good agreement. This latter technique was used to study on one hand the influence of temperture and salt on complex formation, on the other hand the interaction of the antibodies with AMP derivatives. The phosphate group, the ribose and the base are recognized by the antibody, but the C-8 atom of adenine residues is not directly involved in the binding.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1975.tb02217.xDOI Listing

Publication Analysis

Top Keywords

conjugate nucleotide
8
serum albumin
8
complex formation
8
antibodies
6
antibodies adenosine
4
adenosine 5'-monophosphate
4
5'-monophosphate purification
4
purification specificity
4
specificity antibodies
4
antibodies adenosine-5'-monophosphate
4

Similar Publications

Esophageal cancer (EC) is one of the most common highly malignant tumors of the digestive system, with a poor prognosis under current treatment regimens. Nucleolin (NCL) is overexpressed in many tumors, and drugs specifically targeting NCL may offer a promising strategy for treating esophageal cancer. Here, we designed and prepared a novel aptamer-conjugated drug targeting NCL by AS1411 aptamer-human serum albumin (HSA)-the apoprotein of lidamycin (LDP)-active enediyne chromophore (AE), in order to achieve targeted treatment of esophageal cancer.

View Article and Find Full Text PDF

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Aptamer-antibody sandwich immunosensor for electrochemical detection of FT4.

Mikrochim Acta

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, P. R. China.

An aptamer-antibody sandwich electrochemical immunosensor was studied. FeO/MWCNTs-COOH/Nafion was modified and fixed on a glassy carbon electrode to amplify electrical signals. The antibody was coupled with AuNPs to form conjugates.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.

Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!