Synaptosomal plasma membrane Ca(2+) pump activity inhibition by repetitive micromolar ONOO(-) pulses.

Free Radic Biol Med

Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n 06080-Badajoz, Spain.

Published: January 2002

A sustained increase of intracellular free [Ca(2+)] ([Ca(2+)](i)) has been shown to be an early event of neuronal cell death induced by peroxynitrite (ONOO(-)). In this paper, chronic exposure to ONOO(-) has been simulated by treatment of rat brain synaptosomes or plasma membrane vesicles with repetitive pulses of ONOO(-) during at most 50 min, which efficiently produced nitrotyrosine formation in several membrane proteins (including the Ca(2+)-ATPase). The plasma membrane Ca(2+)-ATPase activity at near-physiological conditions (pH 7, submicromolar Ca(2+), and millimolar Mg(2+)-ATP concentrations), which plays a major role in the control of synaptic [Ca(2+)](i), can be more than 75% inhibited by a sustained exposure to micromolar ONOO(-) (e.g., to 100 pulses of 10 microM ONOO(-)). This inhibition is irreversible and mostly due to a decreased V(max), and to the 2-fold increase of the K(0.5) for Ca(2+) stimulation and about 5-fold increase of the K(M) for Mg(2+)-ATP. [Ca(2+)](i) increases to >400 nM when synaptosomes are subjected to this treatment. Reduced glutathione can afford only partial protection against the inhibition produced by micromolar ONOO(-) pulses. Therefore, inhibition of the plasma membrane Ca(2+)-pump activity during chronic exposure to ONOO(-) may account by itself for a large and sustained increase of intracellular [Ca(2+)](i) in synaptic nerve terminals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(01)00760-2DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
micromolar onoo-
12
onoo-
8
onoo- pulses
8
sustained increase
8
increase intracellular
8
chronic exposure
8
exposure onoo-
8
membrane
5
synaptosomal plasma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!