Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-6851(01)00392-9 | DOI Listing |
PLoS Pathog
April 2016
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle.
View Article and Find Full Text PDFExp Parasitol
October 2013
Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, Brazil.
The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using β-glycerophosphate (β-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied.
View Article and Find Full Text PDFCarbohydr Res
September 2011
CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina.
A dense glycocalix covers the surface of Trypanosoma cruzi, the agent of Chagas disease. Sialic acid in the surface of the parasite plays an important role in the infectious process, however, T. cruzi is unable to synthesize sialic acid or the usual donor CMP-sialic acid.
View Article and Find Full Text PDFMol Biochem Parasitol
January 2002
CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
J Biol Chem
March 2000
Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
The phosphoinositide (PI)-specific phospholipase C gene (TcPI-PLC) of the protozoan parasite Trypanosoma cruzi was cloned, sequenced, expressed in Escherichia coli, and the protein product (TcPI-PLC) was shown to have enzymatic characteristics similar to those of mammalian delta-type PI-PLCs. The TcPI-PLC gene is expressed at high levels in the epimastigote and amastigote stages of the parasite, and its expression is induced during the differentiation of trypomastigotes into amastigotes, where TcPI-PLC associates with the plasma membrane and increases its catalytic activity. In contrast to other PI-PLCs described so far, the deduced amino acid sequence of TcPI-PLC revealed some unique features such as an N-myristoylation consensus sequence at its amino-terminal end, lack of an apparent pleckstrin homology domain and a highly charged linker region between the catalytic X and Y domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!