Ecdysone agonists belonging to the bisacylhydrazine class of compounds are a new generation of insecticidal compounds that cause premature lethal molts in susceptible intoxicated insects. While two of the bisacylhydrazines (coded as RH-5992 and RH-2485) are predominantly toxic to lepidopteran pests, RH-5849, which has not been commercialized, has a broader spectrum of toxicity. We have carried out toxicity bioassays with last (4th) instar Chironomus tentans L. larvae, radioligand binding assays using bacterial fusion proteins of C. tentans ecdysone receptor and ultraspiracle (CtEcR, CtUSP), and C. tentans imaginal disc development assays to compare the relative potencies of the three bisacylhydrazine compounds as well as of 20-hydroxyecdysone (20E). In all three assays, the potency of the three bisacylhydrazines was in the order RH-2485>RH-5992>RH-5849. While in toxicity assays 20E was ineffective, most likely due to rapid metabolism, it was more potent than RH-5849 but less so than RH-5992 and RH-2485 in imaginal disc assays. In summary, we compared the potencies of the ecdysone agonists for C. tentans at three levels: whole organism, imaginal discs and the receptor level, and our results indicate that the increased toxicity of the non-steroidal ecdysone agonists for C. tentans has a high correlation to the affinity of these compounds for CtEcR/CtUSP bacterially expressed proteins. Our results, though, do not exclude reasons of metabolic stability of the compounds in C. tentans, which we have not investigated in this report.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0965-1748(01)00109-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!