Goat milk is characterized by a very low heat stability that could be attributed, in part, to the covalent interaction between whey proteins and casein micelles. However, the formation of such a complex in goat milk has never been evidenced. This study was designed to assess whether heat-induced covalent interaction occurs between purified casein micelles and beta-lactoglobulin. We used a multiple approach of ultracentrifugation of heated mixture, chromatographic fractionation of resuspended pellets, sequential enzyme digestion of disulfide-linked oligomers, and identification of disulfide-linked peptides by on-line liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), and tandem MS. We identified three different types of disulfide links: (1) expected intermolecular bridges between beta-Lg molecules; (2) disulfide bond involving two kappa-casein molecules; and (3) a disulfide bond between two peptides, one from beta-Lg and the other from kappa-casein. The involved sites in this last bond were Cys(160) of beta-Lg and Cys(88) of kappa-casein. Although the identified heterolinkage is possibly only one of several different types, the results of this study constitute the first direct evidence of the formation of a covalent complex between casein micelles and beta-lactoglobulin derived from goat milk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf010625w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!