Gene expression in papillary thyroid carcinoma reveals highly consistent profiles.

Proc Natl Acad Sci U S A

Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Pathology, Divisions of Sensory Biophysics and Endocrinology and Nuclear Medicine, Ohio State University, Columbus, OH 43210, USA.

Published: December 2001

Papillary thyroid carcinoma (PTC) is clinically heterogeneous. Apart from an association with ionizing radiation, the etiology and molecular biology of PTC is poorly understood. We used oligo-based DNA arrays to study the expression profiles of eight matched pairs of normal thyroid and PTC tissues. Additional PTC tumors and other tissues were studied by reverse transcriptase-PCR and immunohistochemistry. The PTCs showed concordant expression of many genes and distinct clustered profiles. Genes with increased expression in PTC included many encoding adhesion and extracellular matrix proteins. Expression was increased in 8/8 tumors for 24 genes and in 7/8 tumors for 22 genes. Among these genes were several previously known to be overexpressed in PTC, such as MET, LGALS3, KRT19, DPP4, MDK, TIMP1, and FN1. The numerous additional genes include CITED1, CHI3L1, ODZ1, N33, SFTPB, and SCEL. Reverse transcriptase-PCR showed high expression of CITED1, CHI3L1, ODZ1, and SCEL in 6/6 additional PTCs. Immunohistochemical analysis detected CITED1 and SFTPB in 49/52 and 39/52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue. Genes underexpressed in PTC included tumor suppressors, thyroid function-related proteins, and fatty acid binding proteins. Expression was decreased in 7/8 tumors for eight genes and decreased in 6/8 tumors for 19 genes. We conclude that, despite its clinical heterogeneity, PTC is characterized by consistent and specific molecular changes. These findings reveal clues to the molecular pathways involved in PTC and may provide biomarkers for clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC64980PMC
http://dx.doi.org/10.1073/pnas.251547398DOI Listing

Publication Analysis

Top Keywords

tumors genes
16
thyroid carcinoma
12
ptc
9
genes
9
papillary thyroid
8
normal thyroid
8
reverse transcriptase-pcr
8
ptc included
8
proteins expression
8
7/8 tumors
8

Similar Publications

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.

View Article and Find Full Text PDF

Background: Pancreatic cancer (PAC) has a complex tumor immune microenvironment, and currently, there is a lack of accurate personalized treatment. Establishing a novel consensus machine learning driven signature (CMLS) that offers a unique predictive model and possible treatment targets for this condition was the goal of this study.

Methods: This study integrated multiple omics data of PAC patients, applied ten clustering techniques and ten machine learning approaches to construct molecular subtypes for PAC, and created a new CMLS.

View Article and Find Full Text PDF

Li-Fraumeni syndrome is a cancer predisposition syndrome caused by pathogenic TP53 germline variants and associated with a high lifelong cancer risk. We analysed the German LFS registry that contains data on 304 individuals. Cancer phenotypes were correlated with variants grouped according to their ability to transactivate target genes in a yeast assay using a traditional (non-functional, partially-functional) and a novel (clusters A, B, C) classification of variants into different groups.

View Article and Find Full Text PDF

Endometrial cancer [EC] is the fourth most common cancer in women in the United States. Stark racial disparities are present in EC outcomes in which Black women have significantly higher EC-related mortality than White women. The social and biologic factors that contribute to these disparities are complex, and may include racial differences in epigenetic landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!