Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

Nucleic Acids Res

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1007, Baltimore, MD 21287-4922, USA.

Published: January 2002

Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (www.ncbi.nlm.nih.gov/omim) is now distributed electronically by the National Center for Biotechnology Information (NCBI), where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, approved gene nomenclature, and the highly detailed mapviewer, as well as patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC99152PMC
http://dx.doi.org/10.1093/nar/30.1.52DOI Listing

Publication Analysis

Top Keywords

mendelian inheritance
12
inheritance man
12
man omim
12
online mendelian
8
knowledgebase human
8
human genes
8
genes genetic
8
genetic disorders
8
omim
6
omim knowledgebase
4

Similar Publications

The Monogenic Landscape of Human Infectious Diseases.

J Allergy Clin Immunol

December 2024

St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France. Electronic address:

The spectrum of known monogenic inborn errors of immunity is growing, with certain disorder underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.

View Article and Find Full Text PDF

Multiplex panels of SNP markers based on single-base primer extension in the west Pacific pen shell Atrina lischkeana (Clessin, 1891).

Mol Biol Rep

December 2024

Production Engineering Division, Momoshima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1760 Momoshima, Onomichi, Hiroshima, 722-0061, Japan.

Background: As part of stock enhancement programs for marine fishery species, the stocking of hatchery-produced seedlings into sea areas has been implemented worldwide. DNA markers are vital for responsible stock enhancement practices that aim to conserve the genetic diversity of recipient wild populations. We report novel single-nucleotide polymorphism (SNP) markers and multiplex SNP panels developed for the west Pacific pen shell Atrina lischkeana (Clessin, 1891), a large bivalve that is expected to be a subject of stock enhancement activity as the natural resource has dwindled, especially in Japan.

View Article and Find Full Text PDF

[Prediction of mechanism of ginger-processed Anemarrhenae Rhizoma in intervening in cough due to cold and dampness in lung based on network pharmacology].

Zhongguo Zhong Yao Za Zhi

October 2024

School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian 116600, China Traditional Chinese Medicine Processing Technology Inheritance Base (Liaoning) of the National Administration of Traditional Chinese Medicine Dalian 116600, China.

This study employed network pharmacology, molecular docking, and animal experiments to investigate the mechanism of ginger-processed Anemarrhenae Rhizoma in treating cough due to cold and dampness in lung, aiming to provide a modern pharmacological basis for this therapy. The active ingredients of ginger-processed Anemarrhenae Rhizoma were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) with the oral bioavailability(OB≥30%) and drug likeness(DL≥0.18) as the screening conditions and from the relevant literature.

View Article and Find Full Text PDF

Development of sex-specific molecular markers for early sex identification in Hippophae gyantsensis based on whole-genome resequencing.

BMC Plant Biol

December 2024

Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China.

Hippophae gyantsensis is a dioecious plant endemic to the Qinghai-Tibet Plateau and is significant for ecological restoration and sand stabilization. Its fruit is rich in bioactive compounds that offer economic potential. However, the inability to distinguish sexes before flowering and prolonged maturation hinder breeding and cultivation.

View Article and Find Full Text PDF

Herbicide application to plants heterozygous for herbicide resistance results in distorted segregation favoring resistant allele transmission resulting in a conditional gene drive. Brassica napus plants heterozygous for an allele conferring sulfonylurea resistance at a single locus exhibit normal Mendelian inheritance. However, following application of the herbicide, highly distorted segregation of herbicide resistance occurs among progeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!