Immature B cells express constitutive nuclear factor-kappaB (NF-kappaB) activity and inhibition of this activity is associated with the induction of apoptotic cell death. Previous studies have implicated a calcium-dependent proteolysis of the NF-kappaB inhibitory protein IkappaBalpha as critical in the maintenance of constitutive NF-kappaB activity in these cells. We tested whether modulation of diverse calcium-dependent processes affects the maintenance of constitutive NF-kappaB activity in the WEHI-231 immature B cell line. Calmodulin inhibitors, but not calcineurin inhibition, blocked both IkappaBalpha turnover and the maintenance of constitutive NF-kappaB activity. Inhibition of NF-kappaB DNA binding activity by the calmodulin antagonist W13 also resulted in a loss of the expression of the NF-kappaB target gene, IkappaBalpha. However, prolonged inhibition of NF-kappaB activity for up to 8 h did not lead to apoptotic induction in the WEHI-231 cells. Moreover, removal of calmodulin inhibitors resulted in the reappearance of constitutive NF-kappaB activity and the renewed expression of the IkappaBalpha gene. Thus, calmodulin activity is a requirement for the continual turnover of IkappaBalpha and the maintenance of constitutive NF-kappaB function in WEHI-231 cells. In addition, our findings suggest that inhibition of NF-kappaB activity does not lead to the immediate onset of apoptosis, indicating that prolonged inhibition of NF-kappaB-dependent gene expression is required to cause apoptosis of WEHI-231 B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.61.1.177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!