Phenobarbital (PB) induces various gene encoding drug/steroid-metabolizing enzymes such as cytochromes P450 (P450s) and transferases. Although the nuclear orphan constitutive active receptor (CAR) has been identified as a key transcription factor that regulates the induction of CYP2B, the full scope of CAR-regulated genes still remains a major question. To this end, reverse transcriptase-polymerase chain reaction and cDNA microarray techniques were employed to examine gene expression in wild-type and CAR-null mice. The results show that a total of 138 genes were detected to be either induced or repressed in response to PB treatment, of which about half were under CAR regulation. Including CYP2B10, CYP3A11, and NADPH-CYP reductase, CAR regulated a group of the PB-induced drug/steroid-metabolizing enzymes. Enzymes such as amino levulinate synthase 1 and squalene epoxidase displayed CAR-independent induction by PB. Cyp4a10 and Cyp4a14 represented the group of genes induced by PB only in CAR-null mice, indicating that CAR may be a transcription blocker that prevents these genes from being induced by PB. Additionally, the group of genes encoding enzymes and proteins involved in basic biological processes such as energy metabolism underwent the CAR-dependent repression by PB. Thus, CAR seems to have diverse roles, both as a positive and negative regulator, in the regulation of hepatic genes in response to PB beyond drug/steroid metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.61.1.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!