Opioid agonists acting at their receptors alter intracellular events by initiating activation of various types of Gi/Go proteins. This can be measured by the binding of the stable GTP analog [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS). In this study agonist efficacy is defined by the degree to which an opioid stimulates the binding of [(35)S]GTPgammaS. This allows for a definition of full and partial agonists; a full agonist causing a greater stimulation of [(35)S]GTPgammaS binding than a partial agonist. The hypothesis that the rate of agonist-stimulated [(35)S]GTPgammaS binding is dependent upon agonist efficacy was tested using membranes from C6 glioma cells expressing mu- or delta-opioid receptors. At maximal concentrations the rate of agonist-stimulated [(35)S]GTPgammaS binding followed the efficacy of mu-agonists in stimulating [(35)S]GTPgammaS binding, i.e., [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin > morphine > meperidine > butorphanol > nalbuphine. At submaximal concentrations of mu- or delta-full agonists the [(35)S]GTPgammaS association rate was also reduced, such that the rate of [(35)S]GTPgammaS binding correlated with the extent of [(35)S]GTPgammaS bound, whether this binding was stimulated by a full agonist or a partial agonist. Agonists also stimulated [(35)S]GTPgammaS dissociation, showing that binding of this stable nucleotide was reversible. Comparison of the delta-agonists [D-Ser(2),Leu(5)]-enkephalin-Thr and (+/-)-4-((alpha-R*)-alpha-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxylbenzyl)-N,N-diethylbenzamide, a compound with slow dissociation kinetics, showed the measured rate of G protein activation was not influenced by the agonist switching between receptors. The results are consistent with the idea that the active state(s) of the receptor induced by full or partial agonists is the same, but the number of activated receptors determines the rate of G protein activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.300.1.157 | DOI Listing |
Anesthesiology
November 2024
Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, School of Medicine, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
Br J Pharmacol
April 2024
Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.
Background And Purpose: Whereas biased agonism on the 5-HT receptor has been ascribed to hallucinogenic properties of psychedelics, no information about biased inverse agonism on this receptor is available. In schizophrenia, increased 5-HT receptor constitutive activity has been suggested, highlighting the therapeutic relevance of inverse agonism. This study characterized the modulation of G protein activity promoted by different drugs, commonly considered as 5-HT receptor antagonists, in post-mortem human brain cortex.
View Article and Find Full Text PDFPediatr Res
June 2024
Biomedical Research Foundation, Hospital Clínico San Calos-IdISSC, Madrid, Spain.
Background: Neonatal rats can manifest post-stroke mood disorders (PSMD) following middle cerebral artery occlusion (MCAO). We investigated whether cannabidiol (CBD) neuroprotection, previously demonstrated in neonatal rats after MCAO, includes prevention of PSMD development.
Methods: Seven-day-old Wistar rats (P7) underwent MCAO and received either vehicle or 5 mg/kg CBD treatment.
Methods Mol Biol
July 2023
Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are the very first effector in signal transduction events triggered by G-protein-coupled receptors (GPCRs). One of the most widely used approaches for determining GPCR activity in native tissue is based on the binding of [S]GTPγS. Classically, an heterogeneous procedure including a filtration step has been used, but a modification of the protocol including an immunoprecipitation step has allowed the specific discrimination of the contribution of the different Gα subunit subtypes to the effect of each ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!