Antifreeze glycoproteins from the Greenland cod Boreogadus saida were dimethylated at the N-terminus (m*AFGP) and their dynamics and conformational properties were studied in the presence of ice using (13)C-NMR and FTIR spectroscopy. (13)C-NMR experiments of m*AFGP in D(2)O, in H(2)O, and of freeze-dried m*AFGP were performed as a function of temperature. Dynamic parameters ((1)H T(1 rho) and T(CH)) obtained by varying the contact time revealed notable differences in the motional properties of AFGP between the different states. AFGP/ice dynamics was dominated by fast-scale motions (nanosecond to picosecond time scale), suggesting that the relaxation is markedly affected by the protein hydration. The data suggest that AFGP adopts a similar type of three-dimensional fold both in the presence of ice and in the freeze-dried state. FTIR studies of the amide I band did not show a single prevailing secondary structure in the frozen state. The high number of conformers suggests a high flexibility, and possibly reflects the necessity to expose more ice-binding groups. The data suggest that the effect of hydration on the local mobility of AFGP and the lack of significant change in the backbone conformation in the frozen state may play a role in inhibiting the ice crystal growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302486 | PMC |
http://dx.doi.org/10.1016/S0006-3495(02)75411-8 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electronic and Electrical Engineering, University of Manchester, Manchester M13 9PL, UK.
Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
is the etiological agent of Glässer's disease, which causes high morbidity and mortality in pigs worldwide. Macrolide resistance poses an urgent threat to their treatment, as macrolides are widely used for preventing and treating infections. Here, we determined the susceptibilities to five macrolides and characterized the genetic markers of macrolide resistance.
View Article and Find Full Text PDFFood Chem X
December 2024
College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China.
Starch has been recognized as a vital ingredient in surimi products due to its ability to absorb water, which reduces the deterioration of gels and water loss during freezing and thawing. However, it is essential to ascertain the role of starch in the formation of ice crystals and the texture of surimi gels. The impact of freeze-thaw cycles on the morphology and distribution of ice crystals, as well as the textural characteristics of gelatinized and ungelatinized starch-surimi gels was investigated.
View Article and Find Full Text PDFNanoImpact
January 2025
Géosciences Rennes, CNRS/Université Rennes, 263 av. Général Leclerc, 35000 Rennes, France.
Nanoplastics (NPs) are gaining increasing attention due to their widespread distribution and potential environmental and biological impacts. Spanning a variety of ecosystems - from soils and rivers to oceans and polar ice - NPs interact with complex biological and geochemical processes, posing risks to organisms across multiple trophic levels. Despite their growing presence, understanding the behavior, transport, and toxicity of nanoplastics remains challenging due to their diverse physical and chemical properties as well as the heterogeneity of environmental matrices.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States.
Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!