In polarized cells, the delivery of numerous membrane proteins from the trans-Golgi network to the basolateral surface depends on specific sequences located in their cytoplasmic domain. We have previously shown that the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/MPR) exhibits a polarized cell surface distribution in the human colon adenocarcinoma (Caco-2) cell line in which there is a threefold enrichment on the basolateral surface. To investigate the role of residues in the cytoplasmic region of the receptor that facilitates its entry into the basolateral sorting pathway, we generated stably transfected Caco-2 cell lines expressing various mutant bovine IGF-II/MPRs. The steady-state surface distribution of mutant receptors was analyzed by subjecting filter-grown cell monolayers to incubation with iodinated IGF-II/MPR-specific antibody or to indirect immunofluorescence and visualization by confocal microscopy. Together, these results demonstrate that the sorting of the IGF-II/MPR to the basolateral cell surface depends on recognition of sequences located in its cytoplasmic region that are distinct from the Tyr-based internalization and dileucine-dependent endosomal trafficking motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00028.2001 | DOI Listing |
EMBO Rep
November 2024
Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery.
View Article and Find Full Text PDFTransl Psychiatry
October 2024
Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
Cell Mol Life Sci
October 2024
Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
Nat Cell Biol
October 2024
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
Despite decades of research, apical sorting of epithelial membrane proteins remains incompletely understood. We noted that apical cytoplasmic domains are smaller than those of basolateral proteins; however, the reason for this discrepancy is unknown. Here we used a synthetic biology approach to investigate whether a size barrier at the Golgi apparatus might hinder apical sorting of proteins with large cytoplasmic tails.
View Article and Find Full Text PDFGenes Cells
October 2024
Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!