Anti-allergen antibodies can be neutralized by antibodies obtained against a peptide complementary to the allergen: towards a new peptide therapy for allergy.

Immunol Lett

CEA, Service de Pharmacologie et d'Immunologie, DSV/DRM Ctr d'Etudes de Saclay, Bât. 136, CE Saclay, 91191 Gif-sur-Yvette, Cedex, France.

Published: February 2002

The concept of specific immune treatment against allergic diseases requires the development of antibodies capable of specifically neutralizing anti-allergen antibodies. The aim of the present study was to investigate whether a novel approach, consisting in raising anti-idiotypic blocking antibodies through peptide immunization, could be envisaged in the field of allergy. Using allergy to cow's milk as a model, we prepared polyclonal antibodies against a peptide that is complementary (i.e. hydropathically opposed) to a major epitope of bovine beta-lactoglobulin (BLG), one of the main allergens of bovine milk. Anti-complementary peptide antibodies were found to neutralize in vitro both well-characterized anti-BLG monoclonal antibodies from mice sensitized to BLG and anti-BLG IgE from two patients suffering from milk allergy. These results suggest a new strategy for the functional inhibition of specific disease-associated IgE that may be applicable to the specific treatment of various allergic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-2478(01)00319-4DOI Listing

Publication Analysis

Top Keywords

antibodies peptide
12
anti-allergen antibodies
8
peptide complementary
8
treatment allergic
8
antibodies
7
peptide
5
antibodies neutralized
4
neutralized antibodies
4
complementary allergen
4
allergen peptide
4

Similar Publications

Background: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.

Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.

View Article and Find Full Text PDF

Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.

View Article and Find Full Text PDF

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The spatiotemporal pattern of the spread of pathologically modified tau through brain regions in Alzheimer's disease (AD) can be explained by prion-like cell-to-cell seeding and propagation of misfolded tau aggregates. Hence, to develop targeted therapeutic antibodies, it is important to identify the seeding- and propagation-competent tau species. The hexapeptide VQIINK of tau is a critical region for tau aggregation, and K280 is acetylated in various tauopathies including AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: Abnormal aggregation and accumulation of tau is a hallmark of tauopathy including Alzheimer's disease. Effective targeting of tau for therapeutic purposes requires a clear understanding of its epitope landscape with identification of a key pathogenic tau species. Despite numerous proposed and tested tau epitopes, ranging from the N-terminus to the microtubule-binding region and C-terminus, the most effective target remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!