The binary complexes of 5-amino-3,5-dideoxy-D-glycero-D-galactononulosic acid (NANA), commonly called N-acetyl neuraminic acid, formed with biological metal ions such as Co(II) and Cu(II) and toxic metal ions such as Cd(II) and Pb(II) were investigated in aqueous solution by means of potentiometry, UV and NMR spectroscopy. The corresponding ternary systems with 2,2'-bipyridine were studied in aqueous solution by potentiometry and UV spectroscopy. NANA co-ordinates all metal ions, in both binary and ternary systems through the carboxylic group (protonated or deprotonated according to pH), pyranosidic ring oxygen and glycerol chain alcoholic hydroxy groups. The prevailing species in the pH range 2-7 are of [M(NANA)(2)] type, and their stability constants are greater than those of simple carboxylate complexes. Above pH 7, the species [M(NANA)(2)OH](-) are also formed, but they do not prevent the precipitation of metal hydroxides. This work provides information on the solution state chemistry of NANA in the presence of bivalent metal ions; its great affinity for the toxic metals Cd(II) and Pb(II), near physiological conditions, and the relatively high stability of the complex species found may also account for the mechanism of toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0162-0134(01)00322-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!