Synthesis, structure, and reactivity of closo-2,3,4,5,6,7,8,9,10,11-decahydroxy-1,12-bis(sulfonic acid)-1,12-dicarbadodecaborane(12).

J Am Chem Soc

Department of Chemistry and Biochemistry, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1569, USA.

Published: December 2001

The reaction of closo-1,12-bis(lithio)-1,12-dicarbadodecaborane(12) (1,12-bis(lithio)-p-carborane) with SO(2) formed closo-1,12-bis(lithiosulfinato)-p-carborane (10) in nearly quantitative yield. The latter was converted to closo-1,12-bis(sulfinic acid)-p-carborane (13) via H(+)-exchange. The corresponding 1,12-bis(sulfonic acid) derivative of p-carborane (12) was obtained in high yield by treating 10 with SO(2)Cl(2) and subsequent AlCl(3) mediated hydrolysis of the closo-1,12-bis(chlorosulfonyl)-p-carborane intermediate. The exhaustive oxidation of 12 in hot aqueous H(2)O(2) (30%) afforded B-decahydroxy-1,12-bis(sulfonic acid)-p-carborane (15) in 40% yield. As a byproduct, closo-B-decahydroxy-1-sulfonic acid-p-carborane (14) was formed. Both 14 and 15 were also obtained from the hydroxylation of 10 and 13. Compound 14 was obtained directly in 88% yield by heating 1-sulfinic acid-p-carborane (17) in H(2)O(2) (30%). Compound 17 was synthesized from diphenylmethylsilyl-protected p-carborane by using the method employed in the synthesis of 13. The X-ray structures of 15, its disodium salt, and its dipotassium salt are presented and discussed. Exhaustive methylation of 15 with methyl triflate furnishes closo-B-decamethoxy-1,12-bis(methyl sulfonate)-p-carborane (20). The characterization of closomer 20 also includes its crystal structure determination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja011917gDOI Listing

Publication Analysis

Top Keywords

h2o2 30%
8
synthesis structure
4
structure reactivity
4
reactivity closo-234567891011-decahydroxy-112-bissulfonic
4
closo-234567891011-decahydroxy-112-bissulfonic acid-112-dicarbadodecaborane12
4
acid-112-dicarbadodecaborane12 reaction
4
reaction closo-112-bislithio-112-dicarbadodecaborane12
4
closo-112-bislithio-112-dicarbadodecaborane12 112-bislithio-p-carborane
4
112-bislithio-p-carborane so2
4
so2 formed
4

Similar Publications

Symmetrical Bis-Hydrazone Ligand-Based Binuclear Oxido/Dioxido-Vanadium(IV/V) Complexes: Synthesis, Reactivity, and Catalytic Applications for the Synthesis of Biologically Potent 2-Phenylquinazolin-4-(3)-ones.

Inorg Chem

January 2025

Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruna 15071, Spain.

Symmetrical bis(hydrazone)-based ligands, Hdar(bhz) (), Hdar(fah) (), Hdar(nah) (), and Hdar(inh) () obtained from 4,6-diacetylresorcinol (Hdar) and different hydrazides [benzoylhydrazide (Hbhz), isonicotinoylhydrazide (Hinh), nicotinoylhydrazide (Hnah), and 2-furoylhydrazide (Hfah)], were used to prepare potassium salts of binuclear -[VO] complexes, {K(HO)}[(VO)dar(bhz)] (), {K(HO)}[(VO)dar(fah)] (), {K(HO)}[(VO)dar(nah)] (), and {K(HO)}[(VO)dar(inh)] (), and binuclear [VO] complexes, [{VO(MeOH)}dar(bhz)] (), [{VO(MeOH)}dar(fah)] (), [{VO(MeOH)}dar(nah)] (), and [{VO(MeOH)}dar(inh)] (). In the presence of warm MeOH/DMSO (4:1), changed to {K(HO)}[(VO)Hdar(nah)]DMSO (·DMSO). Single crystal XRD studies of and confirm a binuclear structure along with a distorted square pyramidal geometry of each vanadium center where bis{ONO(2-)} ligands coordinate through phenolate-O, azomethine-N, and enolate-O atoms of each unit.

View Article and Find Full Text PDF

Converting Fe-N-C single-atom catalyst to a new FeNxSey cluster catalyst for proton-exchange membrane fuel cells.

Angew Chem Int Ed Engl

January 2025

Tianjin University, School of Materials science and engineering, School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, CHINA.

Fe-N-C catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device. The construction of a new Fe coordination environment that is different from the square-planar Fe-N 4 configuration in Fe-N-C catalyst is expected to break current stability limits, which however remains unexplored. Here, we report the conversion of Fe-N-C to a new FeNxSey catalyst, where the Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms.

View Article and Find Full Text PDF

Several studies were focused on the application of MIL-100(Fe) (FeO(OH)(HO)(BTC), HBTC is 1,3,5-benzene tricarboxylic acid) in the photo-Fenton reaction, but it still suffers from low efficiency. In this work, MIL-100(Fe) was synthesized at ambient conditions and low pHs using Fe(II) precursors in homogeneous aqueous media to develop a sample with high activity in the photo-Fenton reaction, even better than Fe-porphyrin metal-organic frameworks. The as-synthesized sample is highly crystalline with 30.

View Article and Find Full Text PDF

Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.

View Article and Find Full Text PDF

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!