In a chemical mutagenesis screen, we identified two zebrafish mutants that possessed small pupils. Genetic complementation revealed these two lines are due to mutations in different genes. The phenotypes of the two mutants were characterized using histologic, immunohistochemical, and tissue transplantation techniques. The arrested lens (arl) mutant exhibits a small eye and pupil phenotype at 48 hr postfertilization (hpf) and lacks any histologically identifiable lens structures by 5 days postfertilization (dpf). In contrast, the disrupted lens (dsl) mutants are phenotypically normal until 5 dpf, and then undergo lens disorganization and cell degeneration that is apparent by 7 dpf. Histology reveals the arl mutant terminates lens cell differentiation by 48 hpf, whereas the dsl lens exhibits a defective lens epithelial cell population at 5 dpf. Lens transplantation experiments demonstrate both mutations are autonomous to the lens tissue. Immunohistochemistry reveals the retinal cells may suffer subtle effects, possibly due to the lens abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.1217 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity.
View Article and Find Full Text PDFBackground: Orthokeratology (OK) contact lenses are increasingly prescribed for myopia control but their impact on corneal epithelial immune cells (CEIC) is unclear. This study compares CEIC in OK wearers to soft contact lens (SCL) wearers and non-wearers.
Methods: In vivo confocal microscope images at the corneal central and mid-peripheral subbasal level were evaluated in 18 OK wearers, 18 SCL wearers and 18 non-wearers (mean age 27.
Int J Infect Dis
January 2025
The END Fund, 2 Park Avenue 28th Floor, New York, NY, USA.
It is estimated that more than one billion people are affected by Neglected Tropical Diseases (NTDs). Whilst there are existing treatments to reduce morbidity, a major challenge is creating robust programs that are both country led and leverage the existing health systems. Using a systems thinking approach is a critical component for integrating NTD services, as it takes into account all aspects of what might otherwise be considered fragmented systems to create a more efficient system.
View Article and Find Full Text PDFInt J Pharm
January 2025
Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India. Electronic address:
Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:
Although smart contact lenses have demonstrated great potential in theranostics, there remain critical challenges and opportunities in their commercial development. In this Perspective, the current status and capability of smart theranostic contact lenses are highlighted, focusing on their application as sensing systems for detecting biomarkers such as glucose, intraocular pressure (IOP), and inflammatory cytokines, and as drug delivery systems (DDS) for precise and controlled therapy. Additionally, key challenges associated with clinical development and commercialization of smart theranostic contact lenses are discussed, to optimize diagnostic and therapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!