We recently identified macrophage inflammatory protein 1-alpha (MIP-1alpha) as a factor produced by multiple myeloma (MM) cells that may be responsible for the bone destruction in MM (1). To investigate the role of MIP-1alpha in MM bone disease in vivo, the human MM-derived cell line ARH was stably transfected with an antisense construct to MIP-1alpha (AS-ARH) and tested for its capacity to induce MM bone disease in SCID mice. Human MIP-1alpha levels in marrow plasma from AS-ARH mice were markedly decreased compared with controls treated with ARH cells transfected with empty vector (EV-ARH). Mice treated with AS-ARH cells lived longer than controls and, unlike the controls, they showed no radiologically identifiable lytic lesions. Histomorphometric analysis demonstrated that osteoclasts (OCLs) per square millimeter of bone and OCLs per millimeter of bone surface of AS-ARH mice were significantly less than in EV-ARH mice, and the percentage of tumors per total bone area was also significantly decreased. AS-ARH cells demonstrated decreased adherence to marrow stromal cells, due to reduced expression of the alpha(5)beta(1) integrin and diminished homing capacity and survival. These data support an important role for MIP-1alpha in cell homing, survival, and bone destruction in MM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC209465 | PMC |
http://dx.doi.org/10.1172/JCI13116 | DOI Listing |
Surg Infect (Larchmt)
January 2025
First Clinical Medical College, Ningxia Medical University, Yinchuan, China.
This study aims to compare the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in osteoblasts infiltrated with H37Rv (H37Rv) and to understand the differential bone destruction in spinal tuberculosis (STB) versus spondylitis (BS). Primary osteoblasts were isolated and cultured from the cranial bones of 2-5 days old mice and characterized by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). H37Rv and were cultured to the logarithmic phase, and transfection solutions were prepared.
View Article and Find Full Text PDFCureus
December 2024
Department of Periodontology, Karpaga Vinayaga Institute of Dental Sciences, Chengalpet, IND.
Background Chronic periodontitis is primarily caused by various bacterial species present in the plaque biofilm, which trigger a host inflammatory response. This leads to the abnormal release of inflammatory mediators such as proinflammatory cytokines (interleukin-1, interleukin-6, interleukin-8, and tumor necrosis factor-α), which are free radicals that cause alveolar bone resorption and tooth loss. (bitter gourd) is a widely used medicinal plant for the treatment of numerous diseases such as skin infections, diabetes, metabolic disorders, and carcinomas for several decades.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation of the synovial joints, leading to cartilage and bone destruction. This study aimed to evaluate the diagnostic utility of specific microRNAs (miRNAs) as potential biomarkers for RA. The study was conducted on 60 patients with RA disease along with 20 control participants.
View Article and Find Full Text PDFInt Dent J
January 2025
Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China. Electronic address:
Background: Periodontitis (PD) is a common chronic inflammatory oral disease that severely affects patients' quality of life. Fisetin has been shown to possess antioxidant and anti-inflammatory properties in various biological systems.
Methods: This study first identified the molecular targets of fisetin for PD through network pharmacology analysis.
Int J Oncol
February 2025
National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China.
Multiple myeloma (MM) is a plasma cell malignancy characterized by clonal proliferation in the bone marrow (BM). Previously, it was reported that G‑protein‑coupled receptor 4 (LGR4) contributed to early hematopoiesis and was associated with poor prognosis in patients with MM. However, the mechanism of cell homing and migration, which is critical for MM progression, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!